Silica Composite Aerogels

Zichun Lin, Xinyue Wang, Qing Xu, Hongjuan Duan, Haijun Zhang

Prog Chem ›› 2025, Vol. 37 ›› Issue (11) : 1688-1703.

PDF(5143 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5143 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (11) : 1688-1703. DOI: 10.7536/PC20250406
Review

Silica Composite Aerogels

Author information +
History +

Abstract

Silica composite aerogels, characterized by their extremely low density, high specific surface area, and remarkable porosity, have found extensive applications in high-temperature kilns, the oil and gas sector, aerospace, and various other advanced domains. Firstly, silica aerogels that have been composited through inorganic and organic compositing were thoroughly reviewed in this paper, as well as fiber reinforcement, including a comparative analysis of their thermal conductivity, compressive strength, porosity, density, and other significant physical properties. Secondly, the most recent strategies for additive manufacturing of silica composite aerogels are summarized. Finally, the challenges related to the fabrication and performance of silica composite aerogels and proposed future research directions for their advancement was addressed by this paper.

Contents

1 Introduction

2 Inorganic composite silica aerogel and preparation strategy

2.1 Aluminum oxide composite silica aerogel

2.2 Carbon composite silica aerogel

2.3 Non-oxide composite silica aerogel

3 Organic composite silica aerogel and preparation strategy

3.1 Polymer composite silica aerogel

3.2 Non-polymerzied composite silica aerogel

4 Fiber reinforced silica aerogel and preparation strategy

4.1 Carbonfiber

4.2 Glass fiber

4.3 Other inorganic fibers

4.4 Organic fiber

5 Additive manufacturing strategies for silica composite aerogels

6 Forntier application

6.1 Aerospace

6.2 Energy saving

6.3 Battery thermal management

7 Conculusion and outlook

Key words

silica aerogel / inorganic composite / organic composite / fiber reinforced / additive manufacturing

Cite this article

Download Citations
Zichun Lin , Xinyue Wang , Qing Xu , et al . Silica Composite Aerogels[J]. Progress in Chemistry. 2025, 37(11): 1688-1703 https://doi.org/10.7536/PC20250406

References

[1]
Jelle B P. Energy Build., 2011, 43(10): 2549.
[2]
Ahmad S, Ahmad S, Sheikh J N. J. Non Cryst. Solids, 2023, 611: 122322.
[3]
Yan F R, Liu Y X, Fan L Y, Zhang M, Guo M. J. Mater. Eng., 2023, 51(09): 1
(颜富荣, 刘雅贤, 范龄元, 张梅, 郭敏. 材料工程 2023, 51(09): 1).
[4]
Mazrouei-Sebdani Z, Naeimirad M, Peterek S, Begum H, Galmarini S, Pursche F, Baskin E, Zhao S Y, Gries T, Malfait W J. Mater. Des., 2022, 223: 111228.
[5]
Morris C A, Anderson M L, Stroud R M, Merzbacher C I, Rolison D R. Science, 1999, 284(5414): 622.
[6]
Jia G Y, Deng Y X. Bull. Chin. Ceram. Soc., 2004, 23(6): 91
(贾光耀, 邓育新. 硅酸盐通报, 2004, 23(6): 91).
[7]
Lu Y C, Li Z G. Chin. Refract., 1995, (6): 326
芦贻春, 李再耕. 耐火材料, 1995, (6): 326).
[8]
Hui H, Jiang Y G, Zhang Z M, Feng J Z, Li L J, Feng J. Bull. Chin. Ceram. Soc., 2022, 41(05): 1813
(何辉, 姜勇刚, 张忠明, 冯军宗, 李良军, 冯坚. 硅酸盐通报, 2022, 41(05): 1813).
[9]
Zhou C L, Yang J, Sui X Y, Liu R Y, Zhang W Y, Wang C H. Adv. Ceram., 2014, 35(05): 11
(周长灵, 杨杰, 隋学叶, 刘瑞祥, 张文苑, 王重海. 现代技术陶瓷, 2014, 35(05): 11).
[10]
Yang J X, He F M, Yu F, Hu Z J, Li J N. Aerosp. Mater. Technol., 2013, 43(02): 92
(杨景兴, 何凤梅, 于帆, 胡子君, 李俊宁. 宇航材料工艺, 2013, 43(02): 92).
[11]
Mu R, Liu Y X, Zhang X Y, Zhang Y X, Yao W L, Ren J R, Chen J F, Cheng X L, Yang X M, Gong H W. Acta Mater. Compos. Sin., 2024, 41(07): 3355
(穆锐, 刘元雪, 刘晓英, 张育新, 姚未来, 任俊儒, 陈金锋, 成鑫磊, 杨秀明, 龚宏伟. 复合材料学报, 2024, 41(07): 3355).
[12]
Ciriminna R, Fidalgo A, Pandarus V, Béland F, Ilharco L M, Pagliaro M. Chem. Rev., 2013, 113(8): 6592.
[13]
Linhares T, Pessoa de Amorim M T, Durães L. J. Mater. Chem. A, 2019, 7(40): 22768.
[14]
Ma L G, Sun Y R, Li D L, Ren F J, Li J P. Inorg. Chem. Ind., 2020, 52(08): 11
(马利国, 孙艳荣, 李东来, 任富建, 李建平. 无机盐工业, 2020, 52(08): 11).
[15]
Fan L Y, Zhang M, Guo M. Materials Reports, 2022, 36(15): 5
(范龄元, 张梅, 郭敏. 材料导报, 2022, 36(15): 5).
[16]
Meti P, Mahadik D B, Lee K Y, Wang Q, Kanamori K, Gong Y D, Park H H. Mater. Des., 2022, 222: 111091.
[17]
Wang L K, Feng J Z, Luo Y, Jiang Y G, Zhang G J, Feng J. Small Meth., 2022, 6(5): 2200045.
[18]
Wu Y, Wang X D, Shen J. J. Sol Gel Sci. Technol., 2023, 106(2): 360.
[19]
Shang F Q, Huang L Q, Li G, Zhang Y, Cai Y K, Wang H M, Dong W L, Zhang L, Liu Y. Materials Report, 2020, 34(10): 1
(商富强, 黄丽清, 李刚, 张宇, 蔡亚坤, 王慧敏, 董伟丽, 张磊, 刘悠. 材料导报. 2020, 34(10): 1).
[20]
Gao S, Yang T, Liu S N, Liu K, Cao Z Q, Pang W J, Jiang H Y. J. Sol Gel Sci. Technol., 2024, 109(1): 162.
[21]
Li G Q, Hu L, Zhang K, Hou S F, Fan J P. J. Sol Gel Sci. Technol., 2023, 108(1): 35.
[22]
Yang Z Y, Zhu D C, Li H K. Microporous Mesoporous Mater., 2020, 293: 109781.
[23]
Lv Y M, He F, Ding R, Wu N, Liu taolue, Wang J H. ACS Appl. Mater. Interfaces, 2022, 14(33): 38185.
[24]
He F, Zhou L, Zhang X, Li W J, Yang L J, Zhao H B, He X D. Ceram. Int., 2019, 45(9): 11963.
[25]
Yang M Y, Tang G H, Sheng Q, Guo L, Zhang H. Int. J. Heat Mass Transf., 2022, 199: 123456.
[26]
Guo H C, Wang L W, Guo Z Q, Wen F. He L L, Xiong L. New Chem. Meter., 2024, 52(9): 1
(郭华超, 王良旺, 郭志强, 文芳, 何立粮, 熊磊. 化工新型材料. 2024, 52(9): 1).
[27]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.
[28]
Zhang X F, Yang G H, Zong L, Jiang M, Song Z Q, Ma C, Zhang T P, Duan Y X, Zhang J M. ACS Appl. Mater. Interfaces, 2020, 12(1): 1378.
[29]
Georgakilas V, Tiwari J N, Kemp K C, Perman J A, Bourlinos A B, Kim K S, Zboril R. Chem. Rev., 2016, 116(9): 5464.
[30]
Zhu J Y, Ren H B, Bi Y T. J. Porous Mater., 2018, 25(6): 1697.
[31]
Zheng Z, Zhao Y L, Hu J H, Wang H T. ACS Appl. Mater. Interfaces, 2020, 12(42): 47854.
[32]
Lamy-Mendes A, Malfait W J, Sadeghpour A, Girão A V, Silva R F, Durães L. Carbon, 2021, 180: 146.
[33]
Jiang D P, Qin J, Zhou X F, Li Q L, Yi D Q, Wang B. Ceram. Int., 2022, 48(11): 16290.
[34]
Lamy-Mendes A, Girão A V, Silva R F, Durães L. Microporous Mesoporous Mater., 2019, 288: 109575.
[35]
An Z M, Ye C S, Zhang R B, Qu Q. J. Sol Gel Sci. Technol., 2019, 89(3): 623.
[36]
Rey M, Walter J, Harrer J, Perez C M, Chiera S, Nair S, Ickler M, Fuchs A, Michaud M, Uttinger M J, Schofield A B, Thijssen J H J, Distaso M, Peukert W, Vogel N. Nat. Commun., 2022, 13: 2840.
[37]
Guerra V, Wan C Y, McNally T. Prog. Mater. Sci., 2019, 100: 170.
[38]
Yang H X, Yue X D, Ye F. J. Sol Gel Sci. Technol., 2022, 104(1): 105.
[39]
Yang H X, Li C M, Yue X D, Huo J C, Ye F, Liu J X, Shi F, Ma J. Mater. Des., 2020, 185: 108217.
[40]
Long X, Wu X R, Wei X B, Yu J, Wang S Z, Zhou L C, Liao J X. ACS Appl. Nano Mater., 2023, 6(15): 14393.
[41]
Kantor Z, Wu T T, Zeng Z H, Gaan S, Lehner S, Jovic M, Bonnin A, Pan Z Y, Mazrouei-Sebdani Z, Opris D M, Koebel M M, Malfait W J, Zhao S Y. Chem. Eng. J., 2022, 443: 136401.
[42]
Zhao C Q, Qiao F K, Ji J W, Deng S F, Qi H M. Langmuir, 2023, 39(27): 9468.
[43]
Lee K J, Choe Y J, Kim Y H, Lee J K, Hwang H J. Ceram. Int., 2018, 44(2): 2204.
[44]
Arshad A, Roy A, Mallick T K, Ali Tahir A. Ind. Eng. Chem. Res., 2023, 62(47): 20236.
[45]
Ma H N, Wang B M, Qi J R, Pan Y H, Chen C. Materials, 2023, 16(10): 3778.
[46]
Sarkar A, Singh P K, Zhu L, Faghihi D, Ren S Q. ACS Appl. Eng. Mater., 2024, 2(1): 136.
[47]
Chen Y X, Sepahvand S, Gauvin F, Schollbach K, Brouwers H J H, Yu Q L. Constr. Build. Mater., 2021, 293: 123289.
[48]
Peng Q Q, Lu Y J, Li Z H, Zhang J M, Zong L. Carbohydr. Polym., 2022, 297: 119990.
[49]
Shi F, Liu J, Liu J X, Huang X, Hu S C, Liu D Y, Wang Y Q, Shan Z J. J. Sol Gel Sci. Technol., 2019, 92(1): 101.
[50]
Choi H, Parale V G, Lee K Y, Nah H Y, Driss Z, Driss D, Bouabidi A, Euchy S, Park H H. J. Nanosci. Nanotechnol., 2019, 19(3): 1376.
[51]
Xue J Y, Han R N, Li Y M, Zhang J X, Liu J X, Yang Y. J. Mater. Sci., 2023, 58(36): 14255.
[52]
Zhan W, Chen L, Kong Q H, Li L X, Chen M Y, Jiang J C, Li W X, Shi F, Xu Z Y. Molecules, 2023, 28(14): 5534.
[53]
Mathapati M, Amate K, Durga Prasad C, Jayavardhana M L, Hemanth Raju T. Mater. Today Proc., 2022, 50: 1535.
[54]
Liu X W, Li J M, Duan A J. Petrol. Sci. Bull., 2019, 4(3): 323
(刘小妩, 李建梅, 段爱军. 石油科学通报, 2019, 4(3): 323).
[55]
Meti P, Wang Q, Gong Y D, Mahadik D B, Park H H. Ceram. Int., 2022, 48(13): 19198.
[56]
Dhavale R P, Parale V G, Choi H, Kim T, Lee K Y, Phadtare V D, Park H H. Appl. Surf. Sci., 2024, 642: 158619.
[57]
Ma C C, Shi F, Liu J X, Li T C, Zhu K Y, Liu J Y, Cui G H, Yang D Y, Xiao J B. J. Environ. Chem. Eng., 2023, 11(3): 110157.
[58]
Cai H, Xi J L, Chen Y, Ye L. Compos. Struct., 2025, 357: 118960.
[59]
Zheng H, Zhang W J, Li B W, Zhu J J, Wang C H, Song G J, Wu G S, Yang X P, Huang Y D, Ma L C. Compos. Part B Eng., 2022, 233: 109639.
[60]
Cheng H M, Fan Z H, Hong C Q, Zhang X H. Compos. Part A Appl. Sci. Manuf., 2021, 143: 106313.
[61]
Liu S, Luo D, He M, Qin S H. Microporous Mesoporous Mater., 2024, 377: 113203.
[62]
Al-Furjan M S H, Shan L, Shen X, Zarei M S, Hajmohammad M H, Kolahchi R. J. Mater. Res. Technol., 2022, 19: 2930.
[63]
Patil S P, Shendye P, Markert B. Scr. Mater., 2020, 177: 65.
[64]
Shafi S, Zhao Y P. J. Porous Mater., 2020, 27(2): 495.
[65]
Duan D, Gao X D, Dong Y B, Qi X M, Zhang X X, Islam M Z, Wu Y Q, Zhao X, Li X M. ACS Appl. Polym. Mater., 2022, 4(10): 7352.
[66]
Chandradass J, Kang S, Bae D S. J. Non Cryst. Solids, 2008, 354(34): 4115.
[67]
Jiang Y G, Feng J Z, Feng J. J. Sol Gel Sci. Technol., 2017, 83(1): 64.
[68]
Li M, Jiang H Y, Xu D. J. Porous Mater., 2018, 25(5): 1417.
[69]
Ji Q Y, Chen Z Z, Xing S C, Jiao X L, Chen D R. ACS Appl. Nano Mater., 2023, 6(18): 17218.
[70]
Wang L P, Lian W X, Yin B, Liu X P, Tang S K. Ceram. Int., 2024, 50(4): 6693.
[71]
Xing S C, Ji Q Y, Jiao X L, Chen D R. ACS Appl. Nano Mater., 2023, 6(11): 9939.
[72]
Li Z, Shen K, Hu M, Shulga Y M, Chen Z K, Liu Q, Li M, Wu X X. Gels, 2023, 9(9): 749.
[73]
Li Z, Cheng X D, He S, Shi X J, Gong L L, Zhang H P. Compos. Part A Appl. Sci. Manuf., 2016, 84: 316.
[74]
Ghica M E, Almeida C M R, Fonseca M, Portugal A, Durães L. Polymers, 2020, 12(6): 1278.
[75]
Jadhav S B, Makki A, Hajjar D, Sarawade P B. J. Porous Mater., 2022, 29(4): 957.
[76]
Zou W, Wang Z, Qian Z, Xu J, Zhao N. Adv. Sci., 2022, 9(36): 2204906.
[77]
Ren L L, Cui S M, Cao F C, Guo Q H. Angew. Chem. Int. Ed., 2014, 53(38): 10147.
[78]
Zhao S Y, Siqueira G, Drdova S, Norris D, Ubert C, Bonnin A, Galmarini S, Ganobjak M, Pan Z Y, Brunner S, Nyström G, Wang J, Koebel M M, Malfait W J. Nature, 2020, 584(7821): 387.
[79]
Wang L K, Feng J Z, Luo Y, Zhou Z H, Jiang Y G, Luo X F, Xu L, Li L J, Feng J. ACS Appl. Mater. Interfaces, 2021, 13(34): 40964.
[80]
Wang Z F, Wu Z J, Weng L, Ge S B, Jiang D W, Huang M N, Mulvihill D M, Chen Q G, Guo Z H, Jazzar A, He X M, Zhang X H, Xu B B. Adv. Funct. Mater., 2023, 33(36): 2301549.
[81]
Wang L K, Zhang L J, Feng J Z, Sun L, Jiang Y G, Hu Y J, Feng J. ACS Appl. Nano Mater., 2024, 7(18): 21537.
[82]
Sun C Q, Li Z F, Wang M M, Liu H H, Ma K, Wang Y, Liu R X, Liu F T. J. Non Cryst. Solids, 2025, 666: 123680.
[83]
Huang R M, Jiang Y G, Feng J Z, Li L J, Hu Y J, Wang X Q, Feng J. Chem. Eng. J., 2024, 498: 155283.
[84]
Zhao J H, Xu Y T, Kou Z Y, Guo J L, Grunewald J. Energy Build., 2025, 344: 116009.
[85]
Sun C L, Tang G H, Yang R, Du M, Wang C, Liu Z G. Acta Astronaut., 2025, 233: 344.
[86]
He S, Zhang Y L, Li H C, Huang Y J. J. Energy Storage, 2025, 123: 116748.
[87]
Li L L, Yan M Y, Zhao Z, Xiao Y Y, Sun H Y, Yang H, Cheng X D, Pan Y L, Zhang H P. ACS Appl. Mater. Interfaces, 2025, 17(18): 26908.

Funding

National Natural Science Foundation of China(52272021)
National Natural Science Foundation of China(U23A20559)
National Natural Science Foundation of China(52232002)
Natural Science Foundation of Wuhan(2024040701010051)
PDF(5143 KB)

Accesses

Citation

Detail

Sections
Recommended

/