Preparation of Ionogels and Strategies for Strengthening Its Mechanical Properties

Yan Bao, Junbin Zhou, Ruyue Guo

Prog Chem ›› 2025, Vol. 37 ›› Issue (11) : 1674-1687.

PDF(6196 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6196 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (11) : 1674-1687. DOI: 10.7536/PC20250501
Review

Preparation of Ionogels and Strategies for Strengthening Its Mechanical Properties

Author information +
History +

Abstract

In recent years, flexible electronic devices have shown broad application prospects in fields such as smart sensing equipment, human-machine interfaces and bio-inspired electronic skins. Ionogels demonstrate significant potential in the preparation of flexible electronics due to their excellent electrochemical performance, tunable mechanical properties and high environmental adaptability. However, the generally poor mechanical properties of ionogels limit their widespread use. To address this, this article systematically reviews the research progress of ionogels from two aspects: preparation methods and mechanical reinforcement strategies. First common types of ionic liquids and their characteristics are summarized based on the types of anions and cations. Then the preparation techniques for ionogels are categorized into physical blending, in situ polymerization and solvent exchange, with detailed analysis of their advantages and disadvantages. Next, representative strategies for enhancing mechanical performance are outlined, including regulating polymer network structures, constructing non-covalent interactions, forming microphase-separated structures and introducing inorganic nanoparticles. The mechanism of these strategies, the regulatory effect on the mechanical properties of ionogels, and the application scenarios are systematically explained. Finally, key challenges in current ionogels preparation processes are discussed along with future development directions. This work provides a theoretical foundation for designing high-performance ionogels and improving their properties.

Contents

1 Introduction

2 Types and characteristics of ionic liquids

3 Preparation methods of ionogels

3.1 Physical blending method

3.2 In situ polymerization

3.3 Solvent exchange

4 Strategies for strengthening the mechanical properties of ionogels

5 Conclusion and outlook

Key words

conductive gel / ionic liquid / preparation method / mechanical property / strengthening strategy

Cite this article

Download Citations
Yan Bao , Junbin Zhou , Ruyue Guo. Preparation of Ionogels and Strategies for Strengthening Its Mechanical Properties[J]. Progress in Chemistry. 2025, 37(11): 1674-1687 https://doi.org/10.7536/PC20250501

References

[1]
Dong H, Fan Y X, Zhang X, Wei H G, Xu Y F, Zeng W. J. Compos. Mater., 2025, 42(01): 104
(董昊, 范雨薪, 张旭, 韦会鸽, 徐一飞, 曾威. 复合材料学报, 2025, 42(01): 104).
[2]
Rao Z W, Wang X F, Mao S S, Qin J J, Yang Y S, Liu M N, Ke C, Zhao Y, Sun B. ACS Appl. Nano Mater., 2023, 6(20): 18645.
[3]
Peng Y X, Chen X Y, Zhang Y K. Mater. Eng., 2024, 52(08): 42
(彭玉鑫, 陈雪垠, 章阳坤. 材料工程, 2024, 52(08): 42).
[4]
Hasan N, Bhuyan M M, Jeong J H. Polymers, 2024, 16(14): 2030.
[5]
Mo F, Lin Y H, Liu Y, Zhou P C, Yang J W, Ji Z C, Wang Y. Mater. Sci. Eng. R Rep., 2025, 165: 100989.
[6]
Sui X J, Guo H S, Cai C C, Li Q S, Wen C Y, Zhang X Y, Wang X D, Yang J, Zhang L. Chem. Eng. J., 2021, 419: 129478.
[7]
Ding Q L, Wu Z X, Tao K, Wei Y M, Wang W Y, Yang B R, Xie X, Wu J. Mater. Horiz., 2022, 9(5):1356.
[8]
Lv X P, Zhang Q W, Li Z, Gong K, Gao B, Wei H Q, Li P. J. Appl. Polym. Sci., 2025, 142(27): e57130.
[9]
Huang C, Zhong Y, Cai W, Cao L, Wang Q, Li W, Lin Z, Zhang P. Polymer, 2025, 323: 128226.
[10]
Cui X H, Xi Y B, Tu S W, Zhu Y T. Trac Trends Anal. Chem., 2024, 174: 117662.
[11]
Zhao W C. Doctoral Dissertation of Huazhong University of Science and Technology, 2024
(赵文超. 华中科技大学博士论文, 2024).
[12]
Xie T, Lv X, Tian S, Xie Y H, Lv A W, Lv Z W, Jiang L A, Zhao Y H, Sun S L. Macromolecules., 2023, 56(16): 6256
[13]
Tie J F. Doctoral Dissertation of Donghua University, 2024
(铁建飞. 东华大学博士论文, 2024).
[14]
Wang S, Jiang Y J, Hu X L. Adv. Mater., 2022, 34(52): 2200945.
[15]
Luo Z H, Li W J, Yan J P, Sun J. Adv. Funct. Mater., 2022, 32(32): 2203988.
[16]
Kuroda K. New J. Chem., 2022, 46(42): 20047.
[17]
Gouveia W, Jorge T F, Martins S, Meireles M, Carolino M, Cruz C, Almeida T V, Araújo M E M. Chemosphere, 2014, 104: 51.
[18]
Shangguan X D. Doctoral Dissertation of Northwestern University, 2009
(上官小东. 西北大学博士论文, 2009).
[19]
Jin Y, Zhang G R, Dou Q Q, Chen J Y, Bian L, Li D W, Jia Q W. Food and Medicine, 2020, 22(3): 242
(金艳, 张桂荣, 窦茜茜, 陈建英, 边玲, 李大伟, 贾庆文. 食品与药品, 2020, 22(3): 242).
[20]
Prikhod’ko S A, Shabalin A Y, Shmakov M M, Bardin V V, Adonin N Y. Russ. Chem. Bull., 2020, 69(1): 17.
[21]
Wang X Y, Hu X, Zhang D H, Zhang Y X, Xu H X, Sun Y Y, Gu X Y, Luo J, Gao B. J. Environ. Chem. Eng., 2024, 12(6): 114638.
[22]
Flieger J, Flieger M. Int. J. Mol. Sci., 2020, 21(17): 6267.
[23]
Tomé L C, Porcarelli L, Bara J E, Forsyth M, Mecerreyes D. Mater. Horiz., 2021, 8(12): 3239.
[24]
Wang M, Hu J, Dickey M D. JACS Au, 2022, 2(12): 2645.
[25]
Fan X T, Liu S Q, Jia Z H, Koh J J, Yeo J C C, Wang C G, Surat’man N E, Loh X J, Le Bideau J, He C B, Li Z B, Loh T P. Chem. Soc. Rev., 2023, 52(7): 2497.
[26]
Cao Z, Liu H, Jiang L. Mater. Horiz., 2020, 7(3): 912.
[27]
Xia Q M, Li W Z, Zou X Y, Zheng S J, Liu Z Y, Li L L, Yan F. Mater. Horiz., 2022, 9(11): 2881.
[28]
Dai S, Ju Y H, Gao H J, Lin J S, Pennycook S J, Barnes C E. Chem. Commun., 2000, (3): 243.
[29]
Li H, Li L, Wei J, Chen T, Wei P. Small, 2024, 20(3): 2305848.
[30]
Qu M N, Lv Y Q, Ge J W, Zhang B, Wu Y X, Shen L, Liu Q H, Yan M, He J M. Colloids Surf. A Physicochem. Eng. Aspects, 2023, 664: 131103.
[31]
Choi W Y, Kwon J H, Kim Y M, Moon H C. Small, 2023, 19(37): 2301868.
[32]
Zhao L Y, Xu T, Wang B J, Mao Z P, Sui X F, Feng X L. Chem. Eng. J., 2023, 455: 140796.
[33]
Li H P, Li X X, Liu N, Liu D, Wang Z B, Chen F. Polymer, 2023, 282: 126166.
[34]
Wang H, Mao Y Y, Ji D, Wang L, Wang L, Chen J W, Chang X H, Zhu Y T. Chem. Eng. J., 2023, 471: 144674.
[35]
Wang X, Chen S S, Wu D B, Wu Q, Wei Q C, He B, Lu Q, Wang Q G. Adv. Mater., 2018, 30(17):1705668
[36]
Poh W C, Eh A L, Wu W T, Guo X Y, Lee P S. Adv. Mater., 2022, 34(51): 2206952.
[37]
Ming X Q, Shi L, Zhu H, Zhang Q. Adv. Funct. Mater., 2020, 30(49): 2005079.
[38]
Chen L, Fei X, Zhou Y H, Tian J, Xu L Q, Li Y. J. Colloid Interface Sci., 2022, 628: 287.
[39]
Shi M N, Lin T R, Wang Y, Hu Y, Peng J, Li J Q, Zhai M L. J. Mater. Sci., 2020, 55(34): 16347.
[40]
Tripathi A, Murugavel S, Singh R. Mater. Today Sustain., 2021, 11: 100062.
[41]
Kim M S, Kim J H, Yoo H Y, Yoon D S, Park D H, Lee C Y, Kim S J, Choi S B, Hong K, Lee K H. ACS Mater. Lett., 2024, 6(10): 4658.
[42]
Ren Y Y, Guo J N, Liu Z Y, Sun Z, Wu Y Q, Liu L L, Yan F. Sci. Adv., 2019, 5(8): eaax0648.
[43]
Zhang L M, Jia K, Wang J, Zhao J Y, Tang J D, Hu J. Mater. Horiz., 2022, 9(7): 1911.
[44]
Yu L, Guo S T, Lu Y, Li Y Q, Lan X W, Wu D B, Li R G, Wu S Q, Hu X L. Adv. Energy Mater., 2019, 9(22): 1900257.
[45]
Dinh Xuan H, Timothy B, Park H Y, Lam T N, Kim D, Go Y, Kim J, Lee Y, Ahn S I, Jin S H, Yoon J. Adv. Mater., 2021, 33(25): 2008849.
[46]
Xu L, Huang Z, Deng Z, Du Z, Sun T L, Guo Z H, Yue K. Adv. Mater., 2021, 33(51): 2105306.
[47]
Yu Z, Wu P. Mater. Horiz., 2021, 8(7): 2057.
[48]
Zhang Z Y, Zhao X, Song X, Peng D J, Ren S X, Ren J X, Ma Y L, Li S J. Mater. Horiz., 2024, 11(17): 4171.
[49]
Cui Y, Liu Y L, Wang Q, Li S H, Wang W J, Dong X C. Chem. Eng. J., 2025, 510: 161716.
[50]
Wang Q, Lin L K, Zhang T, Wang Z, Liu X H, Quan Q, Zhang G H, Zhou Y J, Li J W, Zhou X Y, Chen M Z. Chem. Eng. J., 2025, 505: 159608.
[51]
Cao K Y, Zhu Y, Zheng Z H, Cheng W K, Zi Y F, Zeng S Q, Zhao D W, Yu H P. Adv. Sci., 2023, 10(13): 2207233.
[52]
Sajid I H, Aslfattahi N, Salleh M F M, Ghazali N N N, Saidur R, Tahir M, Ali Bashir M B, Sabri M F M. Mater. Today Commun., 2024, 38: 108334.
[53]
Quan Q, Fan C L, Pan N N, Zhu M H, Zhang T, Wang Z, Dong Y, Wu Y K, Tang M, Zhou X Y, Chen M Z. Adv. Funct. Mater., 2023, 33(36): 2303381.
[54]
Zhao X J, Xu J H, Zhang J Y, Guo M R, Wu Z L, Li Y Y, Xu C, Yin H Z, Wang X L. Mater. Horiz., 2023, 10(2): 646.
[55]
Xu A L, Xia Q N, Ju Y J, Wang Y G, Xiao Z F, Wang H G, Xie Y J. Chem. Eng. J., 2024, 499: 156608.
[56]
Wu Y T, Ren Y Y, Liang Y Y, Li Y J. Int. J. Biol. Macromol., 2022, 223: 327.
[57]
Rana H H, Park J H, Ducrot E, Park H, Kota M, Han T H, Lee J Y, Kim J, Kim J H, Howlett P, Forsyth M, MacFarlane D, Park H S. Energy Storage Mater., 2019, 19: 197.
[58]
Cho D H, Cho K G, An S, Kim M S, Oh H W, Yeo J, Yoo W C, Hong K, Kim M, Lee K H. Energy Storage Mater., 2022, 45: 323.
[59]
Chen S P, Zhang N X, Zhang B H, Zhang B, Song J. ACS Appl. Mater. Interfaces, 2018, 10(51): 44706.
[60]
Guan T T, Wang X H, Zhu Y L, Qian L, Lu Z Y, Men Y F, Li J, Wang Y T, Sun J Q. Macromolecules., 2022, 55(13): 5816.
[61]
Hong S H, Kim Y M, Moon H C. ACS Appl. Mater. Interfaces, 2023, 15(23): 28516.
[62]
Ren Y Y, Zou B H, Wu Y T, Ye L J, Liang Y Y, Li Y J. Int. J. Biol. Macromol., 2024, 273: 133002.
[63]
Zhuo S Y, Song C, Rong Q F, Zhao T Y, Liu M J. Nat. Commun., 2022, 13: 1743.
[64]
He W Q, Ming X Q, Xiang Y, Zhang C G, Zhu H, Zhang Q, Zhu S P. ACS Appl. Mater. Interfaces, 2022, 14(17): 20132.
[65]
Park S, Kim B, Cho C, Kim E. J. Mater. Chem. A, 2022, 10(26): 13958.
[66]
Park J, Sun J Y. ACS Appl. Mater. Interfaces, 2022, 14(20): 23375.
[67]
Mirzaei-Saatlo M, Faraji S, Fakhraei M, Moradi-Alavian S, Asghari E, Shekaari H. J. Energy Storage, 2024, 82: 110534.
[68]
Tie J F, Mao Z P, Zhang L P, Zhong Y, Xu H. Adv. Funct. Mater., 2023, 33(52): 2307367.
[69]
Chai J Q, Ru Y F, Jia Y C, Yang Y C, Zhang H Y, Chen L, Zhao T Y, Liu M J. Adv. Mater., 2025, 37(13): 2416250.
[70]
Yu N, Liu P Q, Lin Y L, Zhang A Q. Chem. Eng. J., 2024, 497: 155046.
[71]
Huang C Y, Jia X H, Wang D, Sun X S, Liang Q, Tian R, Guo L Y, Yang J, Song H J. Chem. Eng. J., 2024, 490: 151850.
[72]
Wang M X, Zhang P Y, Shamsi M, Thelen J L, Qian W, Truong V K, Ma J, Hu J, Dickey M D. Nat. Mater., 2022, 21(3): 359.
[73]
Chen L, Zhao C, Huang J, Zhou J J, Liu M J. Nat. Commun., 2022, 13: 6821.
[74]
Xie J L, Li X Q, He Z J, Fan L, Yao D D, Zheng Y P. Mater. Horiz., 2024, 11(1): 238.
[75]
Tang W Y, Dong K Y, Chen Z L, Duan Y, Sun Q H, Li X, Zhai D M, Lv T, Chen T. Chem. Eng. J., 2024, 501: 157726.
[76]
Watanabe T, Takahashi R, Ono T. Soft Matter., 2020, 16(6): 1572
[77]
Kim J, Kim J W, Keum K, Lee H C, Jung G, Park M, Lee Y H, Kim S, Ha J S. Chem. Eng. J., 2023, 457: 141278.
[78]
Lu C, Chen Y X, Yu X P. Polym. Bull., 2023, 80(12): 12895.
[79]
Zhang T T, Wang W, Zhao Y L, Bai H Y, Wen T, Kang S C, Song G S, Song S X, Komarneni S. Chem. Eng. J., 2021, 420: 127574.
[80]
Kong W Q, Wang C W, Jia C, Kuang Y D, Pastel G, Chen C J, Chen G G, He S M, Huang H, Zhang J H, Wang S, Hu L B. Adv. Mater., 2018, 30(39): 1801934.
[81]
Li S J, Cheng Y, Zhu H N, Xu M, Lv H Y, Wang Z E, Liu G M, Song H Z. ACS Appl. Mater. Interfaces, 2024, 16(10): 13103.

Funding

National Natural Science Foundation of China(22378253)
China Postdoctoral Science Foundation(2024M761895)
Shaanxi Provincial Department of Education Science Research Program(24JK0357)
PDF(6196 KB)

Accesses

Citation

Detail

Sections
Recommended

/