Interlayer Spacing Regulations on MoS2-Based Supercapacitors: Recent Advances and Challenges

Wu Mingyu, Ma Dongliang, Hua Qingsong, Lu Shun

Prog Chem ›› 2025, Vol. 37 ›› Issue (9) : 1235-1260.

PDF(9070 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(9070 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (9) : 1235-1260. DOI: 10.7536/PC20250605
Review

Interlayer Spacing Regulations on MoS2-Based Supercapacitors: Recent Advances and Challenges

Author information +
History +

Abstract

Due to its unique layered structure and excellent electrochemical properties, molybdenum disulfide (MoS2) demonstrates significant potential for applications in the energy storage field, particularly in supercapacitors. It is widely regarded as one of the most representative transition metal dichalcogenides. MoS2 possesses a high theoretical specific capacitance, abundant edge active sites, and favorable tunability and structural diversity, which provide it with a distinct advantage in the construction of advanced electrode structures. Additionally, the anisotropic characteristics of MoS2 concerning electron and ion transport offer more dimensions for regulating its electrochemical behavior. This work will systematically review various synthesis strategies for MoS2 and its recent advancements in energy storage, with a particular focus on the mechanisms by which interlayer spacing modulation affects energy storage behavior in supercapacitor configurations. The discussion will encompass a comprehensive logical framework that spans material structure modifications, electronic configuration evolution, and enhancements in macroscopic device performance. This review aims to provide theoretical support and practical guidance for the application of MoS2 in the next generation of high-performance energy storage devices.

Contents

1 Introduction

2 Overview of MoS2 as a fundamental electrode material for supercapacitors

3 Synthesis strategies of MoS2

3.1 “Bottom-up” synthesis of MoS2

3.2 “Top-down” synthesis of MoS2

4 Strategy of modulating MoS2 interlayer spacing and the effects on electrochemical properties

4.1 Interlayer agent induces interlayer spacing expansion

4.2 3D structure construction

4.3 Defect engineering

4.4 Other methods to regulate the interlayer spacing of MoS2

4.5 Theoretical understanding

5 Summary and outlook

Key words

supercapacitor / two-dimensional materials / MoS2 / interlayer spacing / electrochemical property

Cite this article

Download Citations
Wu Mingyu , Ma Dongliang , Hua Qingsong , et al. Interlayer Spacing Regulations on MoS2-Based Supercapacitors: Recent Advances and Challenges[J]. Progress in Chemistry. 2025, 37(9): 1235-1260 https://doi.org/10.7536/PC20250605

References

[1]
Ragupathi V, Panigrahi P, Nagarajan G S. ECS J. Solid State Sci. Technol., 2023, 12(2): 024001.
[2]
Vamsi Krishna B N, Ankinapalli O R, Yu J S. J. Energy Storage, 2024, 92: 112187.
[3]
Jones C W, Park A-H A, Wright P. Acc. Chem. Res., 2023, 56: 3545.
[4]
Ruttinger A W, Tavakkoli S, Shen H, Wang C, Jordaan S M. Energy Environ. Sci., 2022, 15(3): 1222.
[5]
Heydari Gharahcheshmeh M, Chowdhury K. Energy Adv., 2024, 3(11): 2668.
[6]
Dou Q Y, Park H S. Energy Environ. Mater., 2020, 3(3): 286.
[7]
Sriram G, Hegde G, Dhanabalan K, Kalegowda Y, Mouraliraman D, Vishwanath R S, Kurkuri M, Oh T H. J. Energy Storage, 2024, 94: 112454.
[8]
Wu Y P, Wang X F, Li B X, Zhao X D, Liu X Y. Prog. Chem., 2023, 35(7): 1005
( 吴云鹏, 王晓峰, 李本仙, 赵旭东, 刘晓旸. 化学进展, 2023, 35(7): 1005).
[9]
Sahani S, Mahajan H, Han S S. J. Energy Storage, 2024, 90: 111808.
[10]
Kim D, Yun T G, Lee J H, Yoon K R, Kim K. Nanoscale Adv., 2024, 6(7): 1900.
[11]
Wang D, Li X, Zhang A Y, Wen X J, Wang Q, Liu Y G, Qi X W, Wang Z Y. J. Environ. Chem. Eng., 2024, 12(6): 114085.
[12]
Qi Q, Xu P Z, Tian Z D, Sun W, Liu Y J, Hu X. Prog. Chem., 2022, 34(9): 2051
( 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 化学进展, 2022, 34(9): 2051).
[13]
Wu M C, Zheng W Y, Hu X, Zhan F Y, He Q Q, Wang H Y, Zhang Q C, Chen L Y. Small, 2022, 18(50): 2205101.
[14]
Meng L, Wang Q, Sun M, Chen W, Zhao Y, Xu J, Jia Q, Li H, Lu S, Zhang Y. ACS Appl. Nano Mater., 2025, 8: 10907.
[15]
Xie Y T, Zhang H T, Qu Y X, Jiang X L, Huang J F, Zhang X, Gao Y Y, Tang L, Lv Q, Jiao X X, Yang W Q, He Z Y. ACS Energy Lett., 2025, 10(1): 345.
[16]
Salunkhe R R, Wang J, Alowasheeir A, Lin J J, Malgras V, Bando Y, Zakaria M B, Ali Alshehri A, Kim J, Yamauchi Y, Wu K C. ChemistrySelect, 2018, 3(16): 4522.
[17]
Chen X, Jiang D W, Xie K, Liu L L, Wang Y, Wang Y Q. Prog. Chem., 2024, 36(7): 961
( 陈星, 蒋德敏, 谢昆, 刘丽君, 王堙, 王育乔. 化学进展, 2024, 36(7): 961).
[18]
Kim J H, Sung H, Lee G H. Small Sci., 2023, 4: 2300093.
[19]
Jia Q L, Zhang Y, Xu J, Zhao Y J, Wang Q, Rui S Q, Meng L S, Li H, Lu S, Zhang Y X. J. Energy Storage, 2025, 110: 115242.
[20]
Qiao Y N, Sun W C, Yu F, Yu J L, Yao P P, Zhu C Z, Xu J. Electrochim. Acta, 2023, 464: 142929.
[21]
Yu H Y, Jiang G Q, Ni J F, Li L. Sustain. Mater. Technol., 2021, 28: e00255.
[22]
Bai J, Si J G, Mao Y J, Ma H Y, Wang P Y, Li W Y, Xiao K, Zhang G F, Wei Y Y, Zhu X B, Zhao B C, Sun Y P. J. Mater. Chem. A, 2023, 11(23): 12102.
[23]
Li H Y, Yu G, Luo J, Li G Y, Wang W, He B H, Hou Z H, Yin H. J. Electroanal. Chem., 2022, 922: 116715.
[24]
Zhao Y, Cong Y, Ning H, Li Y W, Yang H, Jiao Z M, Song D W, Li Y Z, Zhao Q S, Wu M B. Energy Fuels, 2023, 37(6): 4641.
[25]
Ye B Q, Cui Z, Yang Z X, Wu W B, Ye Y L, Shen Z H, Zhou Y Q, Huang Q C, Ye S W, Cheng Z M, Hong H Y, Meng Z Y, Zeng Z W, Lan Q T, Wang J X, Chen Y, Zhang H, Guo T L, Ye Y, Sa B S, Weng Z Z, Chen Y Y. J. Mater. Chem. C, 2023, 11(39): 13228.
[26]
Zhang Y, Xu J, Lu S, Li H, Yonar T, Hua Q S, Liu T, Zhang Y X. Adv. Compos. Hybrid Mater., 2025, 8: 108.
[27]
Zhang Y, Tang C, Lu S, Zeng Y, Hua Q S, Zhang Y X. Carbon Neutralization, 2025, 4(3): e70006.
[28]
Yuan X L, Xu J, Zhao Y J, Rui S Q, Wang Q, Meng L S, Jia Q L, Li H, Lu S, Zhang Y X. J. Mater. Chem. C, 2025, 13(16): 8179.
[29]
Chen J, Su L P, Zhang X Q, Chen Y X, Wang P, Zheng Q J, Lin D M. ACS Sustainable Chem. Eng., 2023, 11(33): 12467.
[30]
Li H N, Liu Y Z, Zhu X R, Li Y F, Chen C M. Energy Storage Mater., 2024, 73: 103859.
[31]
Rasamani K D, Alimohammadi F, Sun Y G. Mater. Today, 2017, 20(2): 83.
[32]
Sun H H, Liu H Y, Hou Z D, Zhou R, Liu X R, Wang J G. Chem. Eng. J., 2020, 387: 124204.
[33]
Zhou R, Han C J, Wang X M. J. Power Sources, 2017, 352: 99.
[34]
Sarkar D, Das D, Das S, Kumar A, Patil S, Nanda K K, Sarma D D, Shukla A. ACS Energy Lett., 2019, 4(7): 1602.
[35]
Ali B A, Omar A M A, Khalil A S G, Allam N K. ACS Appl. Mater. Interfaces, 2019, 11(37): 33955.
[36]
Panchu S J, Raju K, Singh P, Johnson D D, Swart H C. ACS Appl. Energy Mater., 2023, 6(4): 2187.
[37]
Li Y N, Sun Y, Zhang S, Wu X L, Song M, Jiao M L, Qin Q, Mi L W. RSC Adv., 2023, 13(38): 26509.
[38]
Ramachandran R, Wang Y, Chandrasekaran S, Li M Z, Luo A X, Xu Z X, Wang F. Appl. Mater. Today, 2022, 29: 101578.
[39]
Bo Z, Cheng X N, Yang H C, Guo X Z, Yan J H, Cen K F, Han Z J, Dai L M. Adv. Energy Mater., 2022, 12(11): 2103394.
[40]
Rosaiah P, Ashok K, Radhalayam D, Roy S, Ko T J, Nunna G P, Karim M R. Ceram. Int., 2024, 50(24): 54371.
[41]
Ji Y J, Wei Q L, Sun Y G. Ind. Eng. Chem. Res., 2018, 57(13): 4571.
[42]
Chen Q, Wei Y, Zhai P B, Gong Y J. Rare Met., 2024, 43(12): 6125.
[43]
Liu Y, Wang Z, Hu G, Chen X, Xu K, Guo Y, Xie Y, Wu C. Precis. Chem., 2025, 3: 51.
[44]
Zhang Y C, Zhang R J, Guo Y X, Li Y M, Li K S. J. Alloys Compd., 2024, 998: 174916.
[45]
Theerthagiri J, Senthil R A, Senthilkumar B, Reddy Polu A, Madhavan J, Ashokkumar M. J. Solid State Chem., 2017, 252: 43.
[46]
Singh A, Singh R P, Islam M U, Ahmed S, Bhat A R, Alam M, Iqbal M. Eur. Phys. J. Plus, 2025, 140(5): 381.
[47]
Farooq N, Rehman Z U, Khan M I, Asghar S, Saleem M, Irshad R, Sheikh A, Shanableh A, Manzoor S, Khan Z U. New J. Chem., 2024, 48(19): 8933.
[48]
Park H, Jung G S, Ibrahim K M, Lu Y, Tai K L, Coupin M, Warner J H. ACS Nano, 2022, 16(7): 10260.
[49]
Gupta D, Chauhan V, Kumar R. Inorg. Chem. Commun., 2020, 121: 108200.
[50]
Zhao M H, Huang Z, Wang S X, Zhang L B. Chem. Eng. J., 2020, 401: 126006.
[51]
Yang X, Li J, Liang T, Ma C Y, Zhang Y Y, Chen H Z, Hanagata N, Su H X, Xu M S. Nanoscale, 2014, 6(17): 10126.
[52]
Fan J J, Li Y F, Nguyen H N, Yao Y, Rodrigues D F. Environ. Sci. Nano, 2015, 2(4): 370.
[53]
Rani A, Singh K, Patel A S, Chakraborti A, Kumar S, Ghosh K, Sharma P. Chem. Phys. Lett., 2020, 738: 136874.
[54]
Gangwar R, Pandey D, Kancharlapalli S, Raychaudhuri D, Chakrabarti A, Banerjee A, Ghanty T K. J. Phys. Chem. C, 2021, 125(2): 1493.
[55]
Chang M J, Cui W N, Liu J, Wang K, Du H L, Qiu L, Fan S M, Luo Z M. J. Mater. Sci. Technol., 2020, 36: 97.
[56]
Arefi-Oskoui S, Khataee A, Ucun O K, Kobya M, Hanci T Ö, Arslan-Alaton I. Chemosphere, 2021, 268: 128822.
[57]
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Nat. Nanotechnol., 2011, 6(3): 147.
[58]
Krishnan U, Kaur M, Singh K, Kumar M, Kumar A. Superlattices Microstruct., 2019, 128: 274.
[59]
Wang Y J, Zhai W, Ren Y, Zhang Q H, Yao Y, Li S Y, Yang Q, Zhou X C, Li Z J, Chi B L, Liang J Z, He Z, Gu L, Zhang H. Adv. Mater., 2024, 36(17): 2307269.
[60]
Solati N, Karakaya C, Kaya S. ACS Catal., 2023, 13(1): 342.
[61]
Kiran P S, Kumar K V, Pandit N, Indupuri S, Kumar R, Wagh V V, Islam A, Keshri A K. Adv. Funct. Mater., 2024, 34(29): 2316266.
[62]
Pradhan G, Sharma A K. Appl. Surf. Sci., 2019, 479: 1236.
[63]
Silambarasan K, Archana J, Harish S, Navaneethan M, Sankar Ganesh R, Ponnusamy S, Muthamizhchelvan C, Hara K. Mater. Sci. Technol., 2020, 51: 94.
[64]
Zhao X X, Ning S C, Fu W, Pennycook S J, Loh K P. Adv. Mater., 2018, 30(47): 1802397.
[65]
Wang M C, Ye H, Vasudevan V, Medhekar N V. J. Power Sources, 2022, 542: 231722.
[66]
Pan Y, Guan W M. Int. J. Hydrog. Energy, 2016, 41(26): 11033.
[67]
Pu D L, Pan Y. Ceram. Int., 2021, 47(2): 2311.
[68]
Pan Y, Yu E D. Phys. B Condens. Matter, 2021, 611: 412936.
[69]
Lu Q P, Yu Y F, Ma Q L, Chen B, Zhang H. Adv. Mater., 2016, 28(10): 1917.
[70]
Song T S, Fu L, Wan N K, Wu J X, Xie J J.J. CO2 Util., 2020, 41: 101231.
[71]
Sharma P, Singh M K, Mehata M S. J. Mol. Struct., 2022, 1249: 131651.
[72]
Zhang X H, Huang X H, Xue M Q, Ye X, Lei W N, Tang H, Li C S. Mater. Lett., 2015, 148: 67.
[73]
Cao H W, Bai Z, Li Y T, Xiao Z R, Zhang X W, Li G Z. ACS Sustainable Chem. Eng., 2020, 8(19): 7343.
[74]
Bai Z, Wang L Y, Cao H W, Zhang X W, Li G Z. Fuel, 2022, 322: 124252.
[75]
Florio F, Ferlazzo A, Bonforte S, Nicotra G, Neri G, Pinkas I, van der Boom M E, Gulino A. J. Mater. Chem. C, 2025, 13(22): 11214.
[76]
Dharman R K, Palanisamy G, Oh T H. Chemosphere, 2022, 308: 136571.
[77]
Arafat A, Islam M S, Ferdous N, Islam A S M J, Sarkar M M H, Stampfl C, Park J. Sci. Rep., 2022, 12: 16085.
[78]
Zhan Y J, Liu Z, Najmaei S, Ajayan P M, Lou J. Small, 2012, 8(7): 966.
[79]
Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y M, Zhang H, Lai C S, Li L J. Nano Lett., 2012, 12(3): 1538.
[80]
Xie C Y, Yang P F, Huan Y H, Cui F F, Zhang Y F. Dalton Trans., 2020, 49(30): 10319.
[81]
Yang S Y, Shim G W, Seo S B, Choi S Y. Nano Res., 2017, 10(1): 255.
[82]
Dumcenco D, Ovchinnikov D, Marinov K, Lazić P, Gibertini M, Marzari N, Sanchez O L, Kung Y C, Krasnozhon D, Chen M-W, Bertolazzi S, Gillet P, Fontcuberta i Morral A, Radenovic A, Kis A. ACS Nano, 2015, 9(4): 4611.
[83]
Sitek J, Plocharski J, Pasternak I, Gertych A P, McAleese C, Conran B R, Zdrojek M, Strupinski W. ACS Appl. Mater. Interfaces, 2020, 12(40): 45101.
[84]
Martínez-Merino P, Sani E, Mercatelli L, Alcántara R, Navas J. ACS Sustainable Chem. Eng., 2020, 8(3): 1627.
[85]
Sokolov M R, Tumbinskiy K A, Zvyagina A I, Senchikhin I N, Averin A A, Aleksandrov A E, Tameev A R, Ezhov A A, Kalinina M A. Colloid Interface Sci. Commun., 2022, 47: 100604.
[86]
Magda G Z, Pető J, Dobrik G, Hwang C, Biró L P, Tapasztó L. Sci. Rep., 2015, 5: 14714.
[87]
Nayak S, Swain G, Parida K. ACS Appl. Mater. Interfaces, 2019, 11(23): 20923.
[88]
You X Q, Liu N, Lee C J, Pak J J. Mater. Lett., 2014, 121: 31.
[89]
Wang J W, Zheng X J, Dong Y Y, Chen L Y, Chen L J, He W Y. Dalton Trans., 2023, 52(14): 4537.
[90]
Zhang Y, Jia Q L, Ma M Z, Wang W X, Li B, Wang X, Zhang Y X, Zhu X B. Mater. Today Chem., 2025, 43: 102477.
[91]
Lian M, Wu X M, Wang Q G, Zhang W Z, Wang Y. Ceram. Int., 2017, 43(13): 9877.
[92]
Wang J, Wu Z C, Hu K H, Chen X Y, Yin H B. J. Alloys Compd., 2015, 619: 38.
[93]
Tang C, Zhang Y, Lu S, Zeng Y, Hua Q S, Zhang Y X. ACS Appl. Nano Mater., 2025, 8(3): 1568.
[94]
Chen A Y, Liu H H, Qi P, Xie X F, Wang M T, Wang X Y. J. Alloys Compd., 2021, 864: 158144.
[95]
Liu Q, Gao A M, Huang Y L, Yi F Y, cheng H H, Zhao S X, Chen H Y, Zeng R H, Sun Z Q, Shu D, Song X N. J. Alloys Compd., 2019, 777: 1176.
[96]
Wei S F, Zhou R H, Wang G Y. ACS Omega, 2019, 4(14): 15780.
[97]
Tiwari P, Jaiswal J, Chandra R. Electrochim. Acta, 2019, 324: 134767.
[98]
Guan X B, Zhao L P, Zhang P, Liu J, Song X F, Gao L. Mater. Today Energy, 2020, 16: 100379.
[99]
Manoj S, Sadhanala H K, Perelshtein I, Gedanken A. ACS Appl. Mater. Interfaces, 2022, 14(16): 18570.
[100]
Liu Z P, Wang K W, Li Y J, Yuan S S, Huang G Q, Li X T, Li N. Appl. Catal. B Environ., 2022, 300: 120696.
[101]
Li Z Q, Wang X X, Xu M D, Yin Z K, Zhao J L. J. Alloys Compd., 2022, 894: 162492.
[102]
Tang J, Huang J Z, Ding D J, Zhang S X, Deng X L. Int. J. Hydrog. Energy, 2022, 47(94): 39771.
[103]
Teli A M, Beknalkar S A, Mane S M, Bhat T S, Kamble B B, Patil S B, Sadale S B, Shin J C. Ceram. Int., 2022, 48(19): 29002.
[104]
Zhu F J, Zhang H N, Lu Z Y, Kang D D, Han L. J. Energy Storage, 2021, 42: 103046.
[105]
Zhang H P, Wang K, Wang H, Lin H F, Zheng Y. Catal. Today, 2022, 404: 269.
[106]
Liu T T, Peng N, Zhang X K, Zheng R T, Xia M T, Yu H X, Shui M, Xie Y, Shu J. Nano Energy, 2021, 79: 105460.
[107]
Vikraman D, Hussain S, Karuppasamy K, Kathalingam A, Jo E B, Sanmugam A, Jung J, Kim H S. J. Alloys Compd., 2022, 893: 162271.
[108]
Singha S S, Rudra S, Mondal S, Pradhan M, Nayak A K, Satpati B, Pal P, Das K, Singha A. Electrochim. Acta, 2020, 338: 135815.
[109]
Shao J, Li Y Y, Zhong M, Wang Q Y, Luo X, Li K, Zhao W W. Mater. Lett., 2019, 252: 173.
[110]
Isacfranklin M, Princy L E M, Rathinam Y, Kungumadevi L, Ravi G, Al-Sehemi A G, Velauthapillai D. Energy Fuels, 2022, 36(12): 6476.
[111]
Wu Z C, Li B E, Xue Y J, Li J J, Zhang Y L, Gao F. J. Mater. Chem. A, 2015, 3(38): 19445.
[112]
Joseph N, Muhammed Shafi P, Chandra Bose A. New J. Chem., 2018, 42(14): 12082.
[113]
Wang H, Xu X P, Neville A. RSC Adv., 2021, 11(42): 26273.
[114]
Thomas C, Sasi S, Benazeera Beegum K A, A S A, Reshmi R. Electrochim. Acta, 2024, 508: 145260.
[115]
Cai Z C, Wang Y N, Zhao J, Long Q, Li S W, Guo D, Zhu Z W, Zhang H F. Chem. Eng. J., 2024, 491: 151934.
[116]
Prakash K, Harish S, Kamalakannan S, Logu T, Shimomura M, Archana J, Navaneethan M. J. Energy Chem., 2023, 80: 335.
[117]
Radhakrishnan S, Mane P, Sree Raj K A, Chakraborty B, Rout C S. J. Energy Storage, 2023, 60: 106703.

Funding

The Xinjiang Uygur Automomous Region Science and Technology Plan Project-Key R&D Special Project(2022B02051)
The Semiconductor physics and micro and nano devices Tianshan Innovation team(2023D14001)
The Tianshan Talent Training Project-Xinjiang Science and Technology Innovation Team Program(2023TSYCTD0012)
PDF(9070 KB)

Accesses

Citation

Detail

Sections
Recommended

/