The Impact of Prenatal Perfluorinated and Polyfluoroalkyl Substances Exposure on Placental Structure and Function

Feng Quan, Chuanzi Gao, Wenhui Qiu, Yi Zheng

Prog Chem ›› 2025, Vol. 37 ›› Issue (11) : 1719-1730.

PDF(1932 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1932 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (11) : 1719-1730. DOI: 10.7536/PC20250610
Review

The Impact of Prenatal Perfluorinated and Polyfluoroalkyl Substances Exposure on Placental Structure and Function

Author information +
History +

Abstract

Per- and polyfluoroalkyl substances (PFAS) are a category of persistent organic pollutants (POPs) that are ubiquitously found across various environmental media, due to their extensive application in industrial processes and consumer products. These substances can infiltrate the human body through diet, drinking water, inhalation and skin contact, thereby posing potential risks to human health. The placenta, a critical organ at the maternal-fetal interface, is integral to material exchange and endocrine regulation, functioning as a natural barrier to shield the fetus from harmful external agents. Nonetheless, PFAS can cross the placental barrier, accumulate in placental tissues, and subsequently disrupt normal placental physiological functions, which poses significant threats to fetal growth and development. Based on evidence from epidemiological studies, placental cell models, and animal exposure models, this review summarizes the global exposure levels of PFAS in the placenta, examines the effects of PFAS exposure on placental morphology, structure, and function, and explores the underlying molecular mechanisms. By providing a comprehensive overview of current research, this review also offers insights into future research directions.

Contents

1 Introduction

2 Exposure of placentas to PFAS

2.1 Exposure concentration and distribution of human placentas to PFAS

2.2 Factors influence PFAS retention and transport in the Placenta

3 The effect of PFAS on placental structure and function

3.1 Effect on placental morphological

3.2 Effect on placental histological structure

3.3 Effect on placental vascular

3.4 Effect on nutrient metabolism and transport

3.5 Effect on placental endocrine

3.6 Molecular mechanisms of placental dysfunction

4 Conclusion and outlook

Key words

PFAS / placental structure / vessels / endocrine / nutrient transport / molecular mechanisms

Cite this article

Download Citations
Feng Quan , Chuanzi Gao , Wenhui Qiu , et al. The Impact of Prenatal Perfluorinated and Polyfluoroalkyl Substances Exposure on Placental Structure and Function[J]. Progress in Chemistry. 2025, 37(11): 1719-1730 https://doi.org/10.7536/PC20250610

References

[1]
Wang Y X, Gao X Y, Liu J Y, Lyu B, Li J G, Zhao Y F, Wu Y N. China CDC Week., 2022, 4(9): 168.
[2]
Gao C Z, Drage D S, Abdallah M A, Quan F, Zhang K, Hu S Y, Zhao X, University H, Zheng Y, Harrad S, Qiu W H. ACS ES&T Water, 2024, 4(11): 4881.
[3]
Ragnarsdóttir O, Abou-Elwafa Abdallah M, Harrad S. Environ. Int., 2024, 188: 108772.
[4]
Makey C M, Webster T F, Martin J W, Shoeib M, Harner T, Dix-Cooper L, Webster G M. Environ. Sci. Technol., 2017, 51(13): 7667.
[5]
Toxicological profile for perfluoroalkyls: United States. Agency for Toxic Substances and Disease Registry. 2021. [2025-06-01]http://dx.doi.org/10.15620/cdc:59198.
[6]
Surma M, Sznajder-Katarzyńska K, Wiczkowski W, Piskuła M, Zieliński H. Environ. Toxicol. Chem., 2023, 42(12): 2589.
[7]
Liu H X, Pan Y T, Jin S N, Li Y Y, Zhao L Q, Sun X J, Cui Q Q, Zhang B, Zheng T Z, Xia W, Zhou A F, Campana A M, Dai J Y, Xu S Q. Environ. Int., 2020, 140: 105636.
[8]
Liu H X, Pan Y T, Jin S N, Sun X J, Jiang Y Q, Wang Y Y, Ghassabian A, Li Y Y, Xia W, Cui Q Q, Zhang B, Zhou A F, Dai J Y, Xu S Q. J. Hazard. Mater., 2021, 407: 124378.
[9]
Rivera-Núñez Z, Kinkade C W, Khoury L, Brunner J, Murphy H, Wang C, Kannan K, Miller R K, O’Connor T G, Barrett E S. Environ. Res., 2023, 220: 115233.
[10]
Fábelová L, Beneito A, Casas M, Colles A, Dalsager L, Den Hond E, Dereumeaux C, Ferguson K, Gilles L, Govarts E, Irizar A, Lopez Espinosa M J, Montazeri P, Morrens B, Patayová H, Rausová K, Richterová D, Rodriguez Martin L, Santa-Marina L, Schettgen T, Schoeters G, Haug L S, Uhl M, Villanger G D, Vrijheid M, Zaros C, Murínová P. Chemosphere, 2023, 313: 137530.
[11]
McAdam J, Bell E M. Environ. Health, 2023, 22(1): 41.
[12]
Xing W Y, Sun J N, Liu F H, Shan L S, Yin J L, Li Y Z, Xu H L, Wei Y F, Liu J X, Zheng W R, Zhang Y Y, Song X J, Liu K X, Liu J C, Wang J Y, Jia M Q, Chen X, Li X Y, Liu C, Gong T T, Wu Q J. J. Hazard. Mater., 2024, 472: 134556.
[13]
Perez C, Sehgal N, Eick S M, Barr D B, Panuwet P, Yakimavets V, Chen K, Shankar K, Pearson K J, Andres A, Everson T M. Environ. Res., 2025, 270: 120868.
[14]
Chen F F, Yin S S, Kelly B C, Liu W P. Environ. Sci. Technol., 2017, 51(11): 6387.
[15]
Zhang T, Sun H W, Lin Y, Qin X L, Zhang Y F, Geng X, Kannan K. Environ. Sci. Technol., 2013, 47(14): 7974.
[16]
Yao W C, Xu J J, Tang W T, Gao C, Tao L, Yu J, Lv J, Wang H, Fan Y J, Xu D X, Huang Y C. Environ. Int., 2023, 177: 108014.
[17]
Wan H T, Wong A Y, Feng S, Wong C K. Environ. Sci. Technol., 2020, 54(24): 16050.
[18]
Adams H, Hanrahan J, Kiefte S, O’Brien T, Mercer G V, Steeves K L, Schneider C M, Jobst K J, Cahill L S. Chemosphere, 2024, 356: 141923.
[19]
Wielsoe M, Molina-Molina J M, Rodrlguez-Carrillo A, Mustieles V, Olea N, Fernandez M F, Bonefeld-Jorgensen E C. Reprod. Toxicol., 2023, 120: 108444.
[20]
Yao Q, Gao Y, Zhang Y, Qin K L, Liew Z, Tian Y. Chemosphere, 2021, 285: 131521.
[21]
Han J Q, Lu Z K, Qi Y L, Liu T F, Li Y M, Han H H, Zhao C, Ma X Y. Birth Defects Res., 2024, 116(12): e2423.
[22]
Chu C, Ran H, Zhou Y, Zhao K, Zhang Y T, Fan Y Y, Wu L Y, Liang L X, Huang J W, Guo L H, Zhou J X, Lin L Z, Ma J H, Zhang C F, Yu Y J, Dong G H, Zhao X M. Ecotoxicol. Environ. Saf., 2024, 279: 116453.
[23]
Blake B E, Rickard B P, Fenton S E. Front. Toxicol., 2022, 4: 881347.
[24]
Inoue K, Okada F, Ito R, Kato S, Sasaki S, Nakajima S, Uno A, Saijo Y, Sata F, Yoshimura Y, Kishi R, Nakazawa H. Environ. Health Perspect., 2004, 112(11): 1204.
[25]
Fan X R, Tang S, Wang Y, Fan W H, Ben Y J, Naidu R, Dong Z M. Environ. Sci. Technol., 2022, 56(7): 4282-4294.
[26]
Gao K, Zhuang T F, Liu X, Fu J J, Zhang J X, Fu J, Wang L G, Zhang A Q, Liang Y, Song M Y, Jiang G B. Environ. Sci. Technol., 2019, 53(11): 6529.
[27]
Pan Y T, Zhu Y S, Zheng T Z, Cui Q Q, Buka S L, Zhang B, Guo Y, Xia W, Yeung L W Y, Li Y Y, Zhou A F, Qiu L, Liu H X, Jiang M M, Wu C S, Xu S Q, Dai J Y. Environ. Sci. Technol., 2017, 51(1): 634.
[28]
Chen F F, Yin S S, Kelly B C, Liu W P. Environ. Sci. Technol., 2017, 51(10): 5756.
[29]
Mamsen L S, Jönsson B A G, Lindh C H, Olesen R H, Larsen A, Ernst E, Kelsey T W, Andersen C Y. Sci. Total Environ., 2017, 596-597: 97.
[30]
Mamsen L S, Björvang R D, Mucs D, Vinnars M T, Papadogiannakis N, Lindh C H, Andersen C Y, Damdimopoulou P. Environ. Int., 2019, 124: 482.
[31]
Bangma J, Eaves L A, Oldenburg K, Reiner J L, Manuck T, Fry R C. Environ. Sci. Technol., 2020, 54(13): 8158.
[32]
Lu Y, Meng L Y, Ma D H, Cao H M, Liang Y, Liu H W, Wang Y W, Jiang G B. Environ. Pollut., 2021, 273: 116460.
[33]
Bao J, Shao L X, Liu Y, Cui S W, Wang X, Lu G L, Wang X, Jin Y H. Chemosphere, 2022, 307: 135731.
[34]
Hall S M, Zhang S, Hoffman K, Miranda M L, Stapleton H M. Chemosphere, 2022, 295: 133873.
[35]
Bao J, Qu W e, Shao L, Liu Y, Wang X, Wu Y. China Environmental Science, 2023, 43(7): 3730
(鲍佳, 渠文娥, 邵立新, 刘洋, 王新, 吴雨晴. 中国环境科学, 2023, 43(7): 3730).
[36]
Ji D, Pan Y T, Qiu X L, Gong J J, Li X J, Niu C, Yao J Z, Luo S L, Zhang Z Y, Wang Q, Dai J Y, Wei Y H. Environ. Sci. Technol., 2023, 57(14): 5782.
[37]
Kaiser A M, Forsthuber M, Widhalm R, Granitzer S, Weiss S, Zeisler H, Foessleitner P, Salzer H, Grasl-Kraupp B, Moshammer H, Hartmann C, Uhl M, Gundacker C. Ecotoxicol. Environ. Saf., 2023, 259: 115006.
[38]
Pascali J P, Piva E, Bonasoni M P, Migliavacca C, Seidenari A, Fais P. Environ. Res., 2023, 229: 115955.
[39]
Wang H X, Li W Y, Yang J Q, Wang Y P, Du H Y, Han M H, Xu L J, Liu S P, Yi J P, Chen Y, Jiang Q W, He G S. Sci. Total Environ., 2023, 858: 159747.
[40]
Li J, Ma D H, Qian C G, Guo B B, Guan R N, Liu C, Luo Y D, He A N, Li Z, Zhao C Y, Wang Y W, Jiang G B. Environ. Sci. Technol., 2024, 58(5): 2260.
[41]
Everson T M, Sehgal N, Campbell K, Barr D B, Panuwet P, Yakimavets V, Chen K, Perez C, Shankar K, Eick S M, Pearson K J, Andres A. Environ. Pollut., 2025, 368: 125737.
[42]
Jensen M S, Nørgaard-Pedersen B, Toft G, Hougaard D M, Bonde J P, Cohen A, Thulstrup A M, Ivell R, Anand-Ivell R, Lindh C H, Jönsson B A G. Environ. Health Perspect., 2012, 120(6): 897.
[43]
Stein C R, Wolff M S, Calafat A M, Kato K, Engel S M. Reprod. Toxicol., 2012, 34(3): 312.
[44]
Vela-Soria F, García-Villanova J, Mustieles V, de Haro T, Antignac J P, Fernandez M F. Talanta, 2021, 221: 121577.
[45]
Groisman L, Berman T, Quinn A, Pariente G, Rorman E, Karakis I, Gat R, Sarov B, Novack L. Ecotoxicol. Environ. Saf., 2023, 262: 115165.
[46]
Li J, Cai D, Chu C, Li Q Q, Zhou Y, Hu L W, Yang B Y, Dong G H, Zeng X W, Chen D. Environ. Sci. Technol., 2020, 54(8): 5062.
[47]
Tiburtini G A, Bertarini L, Bersani M, Dragani T A, Rolando B, Binello A, Barge A, Spyrakis F. Arch. Toxicol., 2024, 98(9): 3035.
[48]
Beesoon S, Martin J W. Environ. Sci. Technol., 2015, 49(9): 5722.
[49]
Sheng N, Wang J H, Guo Y, Wang J S, Dai J Y. Chem. Res. Toxicol., 2020, 33(6): 1478.
[50]
Kummu M, Sieppi E, Koponen J, Laatio L, Vähäkangas K, Kiviranta H, Rautio A, Myllynen P. Placenta, 2015, 36(10): 1185.
[51]
Fei C, McLaughlin J K, Tarone R E, Olsen J. Am. J. Epidemiol., 2008, 168(1): 66.
[52]
Gan H, Xing Y N, Tong J, Lu M J, Yan S Q, Huang K, Wu X Y, Tao S M, Gao H, Pan Y T, Dai J Y, Tao F B. Environ. Sci. Technol., 2024, 58(14): 6117.
[53]
Chowdhury S F, Prout N, Rivera-Núñez Z, Barrett E, Brunner J, Duberstein Z, Kannan K, Salafia C M, Shah R, Miller R K, O’Connor T G. Placenta, 2024, 149: 54.
[54]
Khan S, Ouidir M, Lemaitre N, Jovanovic N, Bayat S, Lyon-Caen S, Hoffmann P, Desseux M, Thomsen C, Couturier-Tarrade A, Småstuen Haug L, Valmary-Degano S, Siroux V, Slama R, Alfaidy N, Philippat C. Environ. Int., 2025, 197: 109308.
[55]
Suh C H, Cho N K, Lee C K, Lee C H, Kim D H, Kim J H, Son B C, Lee J T. Mol. Cell. Endocrinol., 2011, 337(1-2): 7.
[56]
Blake B E, Cope H A, Hall S M, Keys R D, Mahler B W, McCord J, Scott B, Stapleton H M, Strynar M J, Elmore S A, Fenton S E. Environ. Health Perspect., 2020, 128(2): 027006.
[57]
Li X H, Ye L P, Ge Y F, Yuan K M, Zhang Y F, Liang Y, Wei J, Zhao C, Lian Q Q, Zhu X Q, Ge R S. Placenta, 2016, 39: 125.
[58]
Lee C K, Kang S G, Lee J T, Lee S W, Kim J H, Kim D H, Son B C, Kim K H, Suh C H, Kim S Y, Park Y B. Mol. Cell. Endocrinol., 2015, 401: 165.
[59]
Zhang Y H, Lv J, Fan Y J, Tao L, Xu J J, Tang W T, Sun N, Zhao L L, Xu D X, Huang Y C. Environ. Health Perspect., 2023, 131(11): 117011.
[60]
Zhu B, Sheng N, Dai J Y. Sci. Total Environ., 2024, 912: 169151.
[61]
Zhao Y, Zhao H Q, Xu H F, An P, Ma B, Lu H Q, Zhou Q J, Li X T, Xiong Y. Ecotoxicol. Environ. Saf., 2022, 247: 114256.
[62]
Jiang W, Deng Y, Song Z, Xie Y, Gong L, Chen Y, Kuang H. Front. Physiol., 2020, 11: 51.
[63]
Lv D, Liu H Y, An Q, Lei C W, Wang Y X, Sun J, Li C H, Lin Y F, Dong Q, Yang Z G, Che K, Liu W D, Han W C. J. Hazard. Mater., 2024, 461: 132536.
[64]
Leonard A S, Lee J, Schubert D, Croen L A, Fallin M D, Newschaffer C J, Walker C K, Salafia C M, Morgan S P, Vvedensky D D. Phys. Rev. E, 2017, 96(4): 040401.
[65]
Knox B, Güil-Oumrait N, Basagaña X, Cserbik D, Dadvand P, Foraster M, Galmes T, Gascon M, Dolores Gómez-Roig M, Gómez-Herrera L, Småstuen Haug L, Llurba E, Márquez S, Rivas I, Sunyer J, Thomsen C, Julia Zanini M, Bustamante M, Vrijheid M. Environ. Int., 2024, 193: 109090.
[66]
Pham A, Zhang J, Feng L P. Reprod. Toxicol., 2020, 98: 269.
[67]
Li J, Quan X J, Lei S F, Huang Z Y, Wang Q, Xu P F. Biomedicines, 2021, 9(6): 677.
[68]
Forsthuber M, Widhalm R, Granitzer S, Kaiser A M, Moshammer H, Hengstschläger M, Dolznig H, Gundacker C. Environ. Pollut., 2022, 293: 118543.
[69]
Chen G, Xu Lin L, Huang Ye F, Wang Q, Wang Bing H, Yu Ze H, Shi Qiao M, Hong Jia W, Li J, Xu Li C. Biomed. Environ. Sci., 2018, 31(11): 843.
[70]
Dai Y H, He J L, He F, Chen Z X, Jiang Y, Geng Y Q, Geng J W, Zhou Y R, Chen X M, Li F F, Wang Y X, Mu X Y. Environ. Pollut., 2024, 363: 125294.
[71]
Murphy V E, Smith R, Giles W B, Clifton V L. Endocr. Rev., 2006, 27(2): 141.
[72]
Gorrochategui E, Pérez-Albaladejo E, Casas J, Lacorte S, Porte C. Toxicol. Appl. Pharmacol., 2014, 277(2): 124.
[73]
Gorrochategui E, Casas J, Porte C, Lacorte S, Tauler R. Anal. Chim. Acta, 2015, 854: 20.
[74]
Chen H, Kapidzic M, Gantar D, Aksel S, Levan J, Abrahamsson D P, Jigmeddagva U, Basrai S, San A L, Gaw S L, Woodruff T J, Fisher S J, Robinson J F. Toxicol. Sci., 2023, 196(2): 187.
[75]
Wang J J, Han T, Zhu X M. Chin. Med. J., 2024, 137(12): 1399.
[76]
Costa M A. Reprod. Biomed. Online, 2016, 32(1): 14.
[77]
Yao Q, Shi R, Wang C F, Han W C, Gao Y, Zhang Y, Zhou Y J, Ding G D, Tian Y. Environ. Int., 2019, 129: 573.
[78]
Liang H W, Koistinen H, Barrett E S, Xun X S, Yin Q, Kannan K, Moog N K, Ng C, O’Connor T G, Miller R, Adibi J J. Environ. Health Perspect., 2024, 132(4): 047008.
[79]
Zhang N, Wang W S, Li W J, Liu C, Wang Y, Sun K. Placenta, 2015, 36(5): 575.
[80]
Wang S W, Zhang B R, Zhai Y N, Tang Y B, Lou Y Z, Zhu Y, Wang Y Y, Ge R S, Li H T. Toxicology, 2022, 480: 153334.
[81]
Tang L M, Mao B P, Zhang B R, Li J J, Tang Y B, Li H T, Ge R S. Biomed. Environ. Sci., 2023, 36(11): 1015.
[82]
Zhao C C, Wang S W, Zhai Y N, Wang M Y, Tang Y B, Li H T, Im Y J, Ge R S. Toxicology, 2023, 488: 153484.
[83]
Dangudubiyyam S V, Mishra J S, Kumar S. Reprod. Toxicol., 2023, 118: 108390.
[84]
Zhu T R, Cao J, Hong J W, Li J. Chinese Journal of Industrial Hygiene and Occupational Diseases, 2020, 38(7): 481
(朱天如, 曹静, 洪加威, 李静. 中华劳动卫生职业病杂志, 2020, 38(07):481).
[85]
Sonkar R, Kay M K, Choudhury M. Chem. Res. Toxicol., 2019, 32(10): 2016.
[86]
Du Y T, Cai Z Z, Zhou G D, Liang W, Man Q H, Wang W Y. Ecotoxicol. Environ. Saf., 2022, 236: 113508.
[87]
Osellame L D, Blacker T S, Duchen M R. Best Pract. Res. Clin. Endocrinol. Metab., 2012, 26(6): 711.
[88]
Hofmann A, Mishra J S, Yadav P, Dangudubiyyam S V, Blesson C S, Kumar S. J. Environ. Sci. Public Health, 2023, 7(4): 164.
[89]
Widhalm R, Granitzer S, Natha B, Zoboli O, Derx J, Zeisler H, Salzer H, Weiss S, Schmitner N, Kimmel R A, Österreicher T, Oberle R, Hengstschläger M, Distel M, Gundacker C. Environ. Pollut., 2025, 367: 125595.
[90]
Di Credico A, Gaggi G, Bucci I, Ghinassi B, Di Baldassarre A. Int. J. Mol. Sci., 2023, 24(19): 15018.

Funding

National Natural Science Foundation of China(42322707)
National Natural Science Foundation of China(42325702)
National Natural Science Foundation of China(42407577)
Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control(2023A1515140118)
Guangdong Basic and Applied Basic Research Foundation(2023B1212060002)
PDF(1932 KB)

Accesses

Citation

Detail

Sections
Recommended

/