High-Entropy Oxygen Evolution Catalysts: Mechanistic Analysis, Optimization Strategies, and Prospective Challenges

Shaofu Kuang, Xue Lu, Jianxing Wang, Hua Lin, Qing Li

Prog Chem ›› 2025, Vol. 37 ›› Issue (11) : 1581-1603.

PDF(30198 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(30198 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (11) : 1581-1603. DOI: 10.7536/PC20250715
Review

High-Entropy Oxygen Evolution Catalysts: Mechanistic Analysis, Optimization Strategies, and Prospective Challenges

Author information +
History +

Abstract

Hydrogen production via water electrolysis powered by renewable energy sources represents a critical approach to addressing the dual challenges of energy and the environment. However, the practical implementationof this technology remains constrained by the sluggish kinetics of the anodic oxygen evolution reaction (OER). Recent advances in high-entropy materials (HEMs) with unique structural configurations and compositional tunability have demonstrated breakthrough capabilities in OER catalysis. Their near-continuous adsorption energy tunability across multi-dimensional landscapes enables surpassing the perforce ceilings of conventional single-/dual-component electrocatalysts. While substantial progress has been achieved in developing HEMs for OER catalysis, formidable scientific challenges persist regarding the intricate composition-structure-activity relationships in multi-component systems and unresolved mechanistic ambiguities governing catalytic synergies. This review systematically examines the fundamental mechanisms underlying the four-electron transfer process in OER, followed by a critical survey of recent breakthroughs in high-entropy alloys (HEAs), high-entropy oxides (HEOs), and high-entropy metal-organic frameworks (HEMOFs) for OER applications. By emphasizing three critical dimensions: atomic coordination environment modulation, electronic structure engineering, and surface adsorption energy optimization, we establish explicit correlations between compositional architecture, structural characteristics, and catalytic performance. This framework profoundly elucidates the synergistic catalytic mechanisms arising from multi-metallic active sites. Furthermore, we propose strategic optimization pathways through material design, defect engineering, and elemental regulation. The review concludes by discussing emerging challenges and future opportunities in this rapidly evolving field. This review can provide inspiration for the accurate design of high-entropy electrocatalysts, the atomic-level analysis of structure-activity relationships, and the regulation and optimization of catalytic performance.

Contents

1 Introduction

2 OER pathway

2.1 AEM

2.2 LOM

2.3 OPM

3 Research progress and bottlenecks of high‑entropy oxygen evolution catalytic materials

3.1 High‑entropy alloys

3.2 High‑entropy oxides

3.3 High‑entropy MOFs

3.4 Other high‑entropy compounds

4 Optimization strategies

4.1 Machine learning‑assisted design

4.2 Defect engineering

4.3 Element regulation

5 Conclusion and outlook

Key words

high-entropy materials / electrocatalysis / oxygen evolution reaction / optimization strategies

Cite this article

Download Citations
Shaofu Kuang , Xue Lu , Jianxing Wang , et al . High-Entropy Oxygen Evolution Catalysts: Mechanistic Analysis, Optimization Strategies, and Prospective Challenges[J]. Progress in Chemistry. 2025, 37(11): 1581-1603 https://doi.org/10.7536/PC20250715

References

[1]
Ghoniem A F. Prog. Energy Combust. Sci., 2011, 37(1): 15.
[2]
Kohse-Höinghaus K. Chem. Rev., 2023, 123(8): 5139.
[3]
Turner J A. Science, 2004, 305(5686): 972.
[4]
Chen G X, Tu X, Homm G, Weidenkaff A. Nat. Rev. Mater., 2022, 7(5): 333.
[5]
Qi J, Zhang W, Cao R. Adv. Energy Mater., 2018, 8(5): 1701620.
[6]
Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q X, Santori E A, Lewis N S. Chem. Rev., 2010, 110(11): 6446.
[7]
Liu L T, Zhai R R, Hu Y D. Energy, 2023, 276: 127386.
[8]
Wu Z P, Lu X F, Zang S Q, Lou X W D. Adv. Funct. Mater., 2020, 30(15): 1910274.
[9]
Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Chem. Soc. Rev., 2017, 46(2): 337.
[10]
Blakemore J D, Crabtree R H, Brudvig G W. Chem. Rev., 2015, 115(23): 12974.
[11]
Halawa M I, Lai J, Xu G. Mater. Today Nano, 2018, 3: 9.
[12]
Luo M, Sun Y, Qin Y, Li Y, Li C, Yang Y, Xu N, Wang L, Guo S. Mater. Today Nano, 2018, 1: 29.
[13]
Lee Y, Suntivich J, May K J, Perry E E, Shao-Horn Y. J. Phys. Chem. Lett., 2012, 3(3): 399.
[14]
Zou X X, Zhang Y. Chem. Soc. Rev., 2015, 44(15): 5148.
[15]
Ni J, Shi Z P, Wang Y B, Yang J H, Wu H X, Wang P B, Xiao M L, Liu C P, Xing W. eScience, 2025, 5(2): 100295.
[16]
Xie X H, Du L, Yan L T, Park S, Qiu Y, Sokolowski J, Wang W, Shao Y Y. Adv. Funct. Mater., 2022, 32(21): 2110036.
[17]
Jiang Z Q, Fan C Z, Pan J Y, Shao L, Chen H, Pervaiz E, Dong Y, Wang T Z, Zheng X R, Li J H, Deng Y D. Rare Met., 2024, 43(7): 2891.
[18]
Hassan J Z, Zaheer A, Raza A, Li G. Sustain. Mater. Technol., 2023, 36: e00609.
[19]
Medford A J, Vojvodic A, Hummelshøj J S, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Nørskov J K. J. Catal., 2015, 328: 36.
[20]
Batchelor T A A, Pedersen J K, Winther S H, Castelli I E, Jacobsen K W, Rossmeisl J. Joule, 2019, 3(3): 834.
[21]
Wang K, Huang J H, Chen H X, Wang Y, Yan W, Yuan X X, Song S Q, Zhang J J, Sun X L. Electrochem. Energy Rev., 2022, 5(S1): 17.
[22]
Wang Z Y, You J H, Zhao Y, Yao R Y, Liu G Y, Lu J L, Zhao S Y. J. Environ. Chem. Eng., 2023, 11(1): 109080.
[23]
Xu X M, Shao Z P, Jiang S P. Energy Technol., 2022, 10(11): 2200573.
[24]
Li T Y, Yao Y G, Huang Z N, Xie P F, Liu Z Y, Yang M H, Gao J L, Zeng K Z, Brozena A H, Pastel G, Jiao M L, Dong Q, Dai J Q, Li S K, Zong H, Chi M F, Luo J, Mo Y F, Wang G F, Wang C, Shahbazian-Yassar R, Hu L B. Nat. Catal., 2021, 4(1): 62.
[25]
Dai S. ChemSusChem, 2020, 13(7): 1915.
[26]
Li T Y, Yao Y G, Ko B H, Huang Z N, Dong Q, Gao J L, Chen W, Li J G, Li S K, Wang X Z, Shahbazian-Yassar R, Jiao F, Hu L B. Adv. Funct. Mater., 2021, 31(21): 2010561.
[27]
Li S Y, Tang X W, Jia H L, Li H L, Xie G Q, Liu X J, Lin X, Qiu H J. J. Catal., 2020, 383: 164.
[28]
Löffler T, Meyer H, Savan A, Wilde P, Garzón Manjón A, Chen Y T, Ventosa E, Scheu C, Ludwig A, Schuhmann W. Adv. Energy Mater., 2018, 8(34): 1802269.
[29]
Jin Z Y, Lyu J, Zhao Y L, Li H L, Lin X, Xie G Q, Liu X J, Kai J J, Qiu H J. ACS Mater. Lett., 2020, 2(12): 1698.
[30]
Tao L, Sun M Z, Zhou Y, Luo M C, Lv F, Li M G, Zhang Q H, Gu L, Huang B L, Guo S J. J. Am. Chem. Soc., 2022, 144(23): 10582.
[31]
Mori K, Hashimoto N, Kamiuchi N, Yoshida H, Kobayashi H, Yamashita H. Nat. Commun., 2021, 12: 3884.
[32]
Pedersen J K, Batchelor T A A, Bagger A, Rossmeisl J. ACS Catal., 2020, 10(3): 2169.
[33]
Yusenko K V, Riva S, Carvalho P A, Yusenko M V, Arnaboldi S, Sukhikh A S, Hanfland M, Gromilov S A. Scr. Mater., 2017, 138: 22.
[34]
Tsai C F, Wu P W, Lin P, Chao C G, Yeh K Y. Jpn. J. Appl. Phys., 2008, 47(7R): 5755.
[35]
Fu X B, Zhang J H, Zhan S Q, Xia F J, Wang C J, Ma D S, Yue Q, Wu J S, Kang Y J. ACS Catal., 2022, 12(19): 11955.
[36]
Zhang D, Shi Y, Zhao H, Qi W J, Chen X L, Zhan T R, Li S X, Yang B, Sun M Z, Lai J P, Huang B L, Wang L. J. Mater. Chem. A, 2021, 9(2): 889.
[37]
Jiang Q, Lu R H, Gu J F, Zhang L, Liu K L, Huang M Y, Liu P, Zuo S Y, Wang Y L, Zhao Y, Ma P Y, Fu Z Y. Chem. Eng. J., 2023, 453: 139510.
[38]
Li P, Yao Y P, Ouyang W G, Liu Z, Yin H Y, Wang D H. J. Mater. Sci. Technol., 2023, 138: 29.
[39]
Miao K H, Jiang W D, Chen Z Q, Luo Y, Xiang D, Wang C H, Kang X W. Adv. Mater., 2024, 36(8): 2308490.
[40]
Huang C L, Lin Y G, Chiang C L, Peng C K, Senthil Raja D, Hsieh C T, Chen Y A, Chang S Q, Yeh Y X, Lu S Y. Appl. Catal. B Environ., 2023, 320: 122016.
[41]
Wang S Q, Xu B L, Huo W Y, Feng H C, Zhou X F, Fang F, Xie Z H, Shang J K, Jiang J Q. Appl. Catal. B Environ., 2022, 313: 121472.
[42]
Bockris J O, Otagawa T. J. Electrochem. Soc., 1984, 131(2): 290.
[43]
Man I C, Su H Y, Calle-Vallejo F, Hansen H A, Martínez J I, Inoglu N G, Kitchin J, Jaramillo T F, Nørskov J K, Rossmeisl J. ChemCatChem, 2011, 3(7): 1159.
[44]
Song F, Busch M M, Lassalle-Kaiser B, Hsu C S, Petkucheva E, Bensimon M, Chen H M, Corminboeuf C, Hu X L. ACS Cent. Sci., 2019, 5(3): 558.
[45]
Bockris J O. J. Chem. Phys., 1956, 24(4): 817.
[46]
Grimaud A, Demortière A, Saubanère M, Dachraoui W, Duchamp M, Doublet M L, Tarascon J M. Nat. Energy, 2017, 2: 16189.
[47]
Koper M. Chem. Sci., 2013, 4: 2710.
[48]
Huang Z F, Song J J, Dou S, Li X G, Wang J, Wang X. Matter, 2019, 1(6): 1494.
[49]
Jiang J, Sun F F, Zhou S, Hu W, Zhang H, Dong J C, Jiang Z, Zhao J J, Li J F, Yan W S, Wang M. Nat. Commun., 2018, 9: 2885.
[50]
Su H, Zhou W L, Zhou W, Li Y L, Zheng L R, Zhang H, Liu M H, Zhang X X, Sun X, Xu Y Z, Hu F C, Zhang J, Hu T D, Liu Q H, Wei S Q. Nat. Commun., 2021, 12: 6118.
[51]
Luo X, Zhao H Y, Tan X, Lin S, Yu K S, Mu X Q, Tao Z H, Ji P X, Mu S C. Nat. Commun., 2024, 15: 8293.
[52]
Huang Z F, Xi S B, Song J J, Dou S, Li X G, Du Y H, Diao C Z, Xu Z J, Wang X. Nat. Commun., 2021, 12: 3992.
[53]
Huang Z F, Song J J, Du Y H, Xi S B, Dou S, Nsanzimana J M V, Wang C, Xu Z J, Wang X. Nat. Energy, 2019, 4(4): 329.
[54]
Qian Z X, Liang G H, Shen L F, Zhang G, Zheng S S, Tian J H, Li J F, University M N, Zhang H. J. Am. Chem. Soc., 2025, 147(1): 1334.
[55]
Huang Y, Wang Z Y, Xiao H, Liu Q D, Wang X. J. Am. Chem. Soc., 2024, 146(42): 29006.
[56]
Kuang S F, Pi Z G, Li X W, Wang J X, Lin H, Nie M, Sun J H, Zhang H L, Li Q. J. Colloid Interface Sci., 2025, 679: 296.
[57]
Yin Z H, Huang Y, Song K P, Li T T, Cui J Y, Meng C, Zhang H G, Wang J J. J. Am. Chem. Soc., 2024, 146(10): 6846.
[58]
Wang F Q, Zou P C, Zhang Y Y, Pan W L, Li Y, Liang L M, Chen C, Liu H, Zheng S J. Nat. Commun., 2023, 14: 6019.
[59]
Wang N, Ou P F, Miao R K, Chang Y X, Wang Z Y, Hung S F, Abed J, Ozden A, Chen H Y, Wu H L, Huang J E, Zhou D J, Ni W Y, Fan L Z, Yan Y, Peng T, Sinton D, Liu Y C, Liang H Y, Sargent E H. J. Am. Chem. Soc., 2023, 145(14): 7829.
[60]
Fang C, Zhou J, Zhang L L, Wan W C, Ding Y X, Sun X Y. Nat. Commun., 2023, 14: 4449.
[61]
Hao Y X, Hung S F, Zeng W J, Wang Y, Zhang C C, Kuo C H, Wang L Q, Zhao S, Zhang Y, Chen H Y, Peng S J. J. Am. Chem. Soc., 2023, 145(43): 23659.
[62]
Chen X, Wang Q C, Cheng Y W, Xing H L, Li J Z, Zhu X J, Ma L B, Li Y T, Liu D M. Adv. Funct. Mater., 2022, 32(26): 2112674.
[63]
Yagi S, Yamada I, Tsukasaki H, Seno A, Murakami M, Fujii H, Chen H, Umezawa N, Abe H, Nishiyama N, Mori S. Nat. Commun., 2015, 6: 8249.
[64]
Chang J W, Shi Y Y, Wu H, Yu J K, Jing W, Wang S Y, Waterhouse G I N, Tang Z Y, Lu S Y. J. Am. Chem. Soc., 2024, 146(19): 12958.
[65]
Ji Q Q, Tang B, Zhang X L, Wang C, Tan H, Zhao J, Liu R Q, Sun M, Liu H J, Jiang C, Zeng J R, Cai X K, Yan W S. Nat. Commun., 2024, 15: 8089.
[66]
Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y. Adv. Eng. Mater., 2004, 6(5): 299.
[67]
Senkov O N, Senkova S V, Miracle D B, Woodward C. Mater. Sci. Eng. A, 2013, 565: 51.
[68]
Senkov O N, Wilks G B, Miracle D B, Chuang C P, Liaw P K. Intermetallics, 2010, 18(9): 1758.
[69]
Ma Y J, Ma Y, Wang Q S, Schweidler S, Botros M, Fu T T, Hahn H, Brezesinski T, Breitung B. Energy Environ. Sci., 2021, 14(5): 2883.
[70]
Liu W J, Bao J, Guan M L, Zhao Y, Lian J B, Qiu J X, Xu L, Huang Y P, Qian J, Li H M. Dalton Trans., 2017, 46(26): 8372.
[71]
Chunduri A, Gupta S, Bapat O, Bhide A, Fernandes R, Patel M K, Bambole V, Miotello A, Patel N. Appl. Catal. B Environ., 2019, 259: 118051.
[72]
Xing M, Kong L B, Liu M C, Liu L Y, Kang L, Luo Y C. J. Mater. Chem. A, 2014, 2(43): 18435.
[73]
Wang J Y, Wang J, Zhang M, Li S M, Liu R, Li Z Q. J. Alloys Compd., 2020, 821: 153463.
[74]
Pi Z G, Hao J C, Kuang S F, Shi R J, Li X W, Wang J X, Lin H, Nie M, Li Q. Int. J. Hydrog. Energy, 2024, 93: 84.
[75]
Li Y J, Huang B L, Sun Y J, Luo M C, Yang Y, Qin Y N, Wang L, Li C J, Lv F, Zhang W Y, Guo S J. Small, 2019, 15: 1804212.
[76]
Kuang S F, Zhang H L, Zhou L W, Pi Z G, Lin H, Nie M, Sun J H, Li Q. J. Electroanal. Chem., 2024, 963: 118318.
[77]
Jin Z Y, Lv J, Jia H L, Liu W H, Li H L, Chen Z H, Lin X, Xie G Q, Liu X J, Sun S H, Qiu H J. Small, 2019, 15(47): 1904180.
[78]
Liu L H, Li N, Han M, Han J R, Liang H Y. Rare Met., 2022, 41(1): 125.
[79]
Sharma L, Katiyar N K, Parui A, Das R, Kumar R, Tiwary C S, Singh A K, Halder A, Biswas K. Nano Res., 2022, 15(6): 4799.
[80]
Asghari Alamdari A, Jahangiri H, Yagci M B, Igarashi K, Matsumoto H, Motallebzadeh A, Unal U. ACS Appl. Energy Mater., 2024, 7(6): 2423.
[81]
Xie M K, Xiao X, Wu D J, Zhen C, Wu C S, Wang W J, Nian H, Li F Y, Gu M D, Xu Q. Nano Res., 2024, 17(6): 5288.
[82]
Mei Y J, Chen J L, Wang Q, Guo Y Q, Liu H W, Shi W H, Lin C, Yuan Y F, Wang Y H, Xia B Y, Yao Y G. Sci. Adv., 2024, 10(47): eadq6758.
[83]
Sun Y H, Tang T M, Xiao L Y, Han J Y, Bai X, Shi M Y, Chen S Y, Sun J R, Ma Y Y, Guan J Q. Chem. Eur. J., 2024, 30(17): e202303779.
[84]
Zhang L, Cai W, Bao N. Adv. Mater., 2021, 33(22): e2100745.
[85]
Duan C Q, Li X L, Wang D, Wang Z Y, Sun H Y, Zheng R G, Liu Y G. Sustain. Energy Fuels, 2022, 6(6): 1479.
[86]
Wang D D, Liu Z J, Du S Q, Zhang Y Q, Li H, Xiao Z H, Chen W, Chen R, Wang Y Y, Zou Y Q, Wang S Y. J. Mater. Chem. A, 2019, 7(42): 24211.
[87]
Zhao C H, Li N, Zhang R Z, Zhu Z Q, Lin J H, Zhang K F, Zhao C J. ACS Appl. Mater. Interfaces, 2019, 11(51): 47858.
[88]
Zhang L, Cai W, Bao N, Yang H. Adv. Mater., 2022, 34(26): 2110511.
[89]
Zhong X, Zhu Y A, Dai W, Yu J, Lu T, Pan Y. New J. Chem., 2022, 46(18): 8398.
[90]
Nguyen T X, Su Y H, Lin C C, Ting J M. Adv. Funct. Mater., 2021, 31(48): 2106229.
[91]
Wang Q Q, Li J Q, Li Y J, Shao G M, Jia Z, Shen B L. Nano Res., 2022, 15(10): 8751.
[92]
Lai D, Kang Q, Gao F, Lu Q. J. Mater. Chem. A, 2021, 9(33): 17913.
[93]
Zhou Y F, Gao L Q, Chen H Y, Wang H, Zhang J, Li X M, Duo F F, Guan G Q. J. Mater. Sci. Technol., 2024, 168: 62.
[94]
Yao Y C, Ma Z T, Dou Y B, Lim S Y, Zou J Z, Stamate E, Jensen J O, Zhang W J. Chem. Eur. J., 2022, 28(14): e202104288.
[95]
Zhao C J, Cai W L, Sun N, Chen S, Jing W B, Zhao C H. J. Phys. Chem. Solids, 2024, 184: 111668.
[96]
Zhao X, Xue Z, Chen W, Bai X, Shi R, Mu T. J. Mater. Chem. A, 2019, 7(46): 26238.
[97]
Mei Y, Feng Y, Zhang C, Zhang Y, Qi Q, Hu J. ACS Catal., 2022, 12(17): 10808.
[98]
Zhu H, Sun S H, Hao J C, Zhuang Z C, Zhang S G, Wang T D, Kang Q, Lu S L, Wang X F, Lai F L, Liu T X, Gao G H, Du M L, Wang D S. Energy Environ. Sci., 2023, 16(2): 619.
[99]
Li P, Wu B, Du K, Liu Z, Gao E, Yin H, Wang D. ACS Sustain. Chem. Eng., 2023, 11(38): 14246.
[100]
Qiu H J, Fang G, Gao J, Wen Y, Lv J, Li H, Xie G, Liu X, Sun S. ACS Mater. Lett., 2019, 1(5): 526.
[101]
Zhou D J, Li P S, Lin X, McKinley A, Kuang Y, Liu W, Lin W-F, Sun X M, Duan X. Chem. Soc. Rev., 2021, 50(15): 8790.
[102]
Xue S, Wu P, Zhao L, Nan Y, Lei W. Prog. Chem., 2022, 34(12): 2686
(薛世翔, 吴攀, 赵亮, 南艳丽, 雷琬莹. 化学进展, 2022, 34(12): 2686).
[103]
Zhou L L, Xie R G, Wang L J. Prog. Chem., 2019, 31(2/3): 275
(周伶俐, 谢瑞刚, 王林江. 化学进展, 2019, 31(2/3): 275).
[104]
Gu K Z, Zhu X Y, Wang D D, Zhang N N, Huang G, Li W, Long P, Tian J, Zou Y Q, Wang Y Y, Chen R, Wang S Y. J. Energy Chem., 2021, 60: 121.
[105]
Hao M, Chen J, Chen J Y, Wang K X, Wang J L, Lei F C, Hao P, Sun X, Xie J F, Tang B. J. Colloid Interface Sci., 2023, 642: 41.
[106]
Fabbri E, Nachtegaal M, Binninger T, Cheng X, Kim B J, Durst J, Bozza F, Graule T, Schäublin R, Wiles L, Pertoso M, Danilovic N, Ayers K E, Schmidt T J. Nat. Mater., 2017, 16(9): 925.
[107]
Xu X, Song F, Hu X L. Nat. Commun., 2016, 7: 12324.
[108]
Liang X L, Xu K, Gao W Q, Liang J, Lv T M, Zhang H Y, Lu J, Zou L, Liu J X. J. Mater. Chem. A, 2024, 12(33): 22030.
[109]
Deng X H, Tüysüz H. ACS Catal., 2014, 4(10): 3701.
[110]
Xu Y J, Bian W Y, Wu J, Tian J H, Yang R Z. Electrochim. Acta, 2015, 151: 276.
[111]
Wei C, Feng Z X, Scherer G G, Barber J, Shao-Horn Y, Xu Z J. Adv. Mater., 2017, 29(23): 1606800.
[112]
Sun S N, Sun Y M, Zhou Y, Xi S B, Ren X, Huang B C, Liao H B, Wang L P, Du Y H, Xu Z J. Angew. Chem., 2019, 131(18): 6103.
[113]
Liu F M, Yu M, Chen X, Li J H, Liu H H, Cheng F Y. Chin. J. Catal., 2022, 43(1): 122.
[114]
Kim K H, Choi Y H. J. Electroanal. Chem., 2022, 922: 116737.
[115]
Wang J R, Sun S N, Xi S B, Sun Y M, Ong S J H, Seh Z W, Xu Z J. J. Phys. Chem. C, 2024, 128(12): 4978.
[116]
Zhang M Y, Zhou X Y, Luo K L, Fan Y N, He C D, Niu Q, Zhang J J, Zhang P F, Dai S. J. Mater. Chem. A, 2025, 13(2): 1287.
[117]
Yuan L, Ge L, Sun X L, Zhang J Q, Yu J, Zhang C Y, Li H B. CrystEngComm, 2020, 22(37): 6216.
[118]
Wang T, Fan J T, Do-Thanh C L, Suo X, Yang Z Z, Chen H, Yuan Y T, Lyu H L, Yang S Z, Dai S. Angew. Chem. Int. Ed., 2021, 60(18): 9953.
[119]
Nguyen T X, Liao Y C, Lin C C, Su Y H, Ting J M. Adv. Funct. Mater., 2021, 31(27): 2101632.
[120]
Xu W, Chen H, Jie K C, Yang Z Z, Li T T, Dai S. Angew. Chem. Int. Ed., 2019, 58(15): 5018.
[121]
Xu S S, Li M, Wang H M, Sun Y T, Liu W Y, Duan J J, Chen S. J. Phys. Chem. C, 2022, 126(33): 14094.
[122]
Wang S Q, Huo W Y, Fang F, Xie Z H, Shang J K, Jiang J Q. Chem. Eng. J., 2022, 429: 132410.
[123]
Xu Q C, Jiang H, Li Y H, Liang D, Hu Y J, Li C Z. Appl. Catal. B Environ., 2019, 256: 117893.
[124]
Sivanantham A, Shanmugam S. ChemElectroChem, 2018, 5(14): 1937.
[125]
Ahmad Shah S S, Najam T, Aslam M K, Ashfaq M, Rahman M M, Wang K, Tsiakaras P, Song S Q, Wang Y. Appl. Catal. B Environ., 2020, 268: 118570.
[126]
Hu K L, Ohto T, Chen L H, Han J H, Wakisaka M, Nagata Y, Fujita J I, Ito Y. ACS Energy Lett., 2018, 3(7): 1539.
[127]
Li F Q, Ma Y J, Wu H, Zhai Q X, Zhao J Y, Ji H R, Tang S C, Meng X K. J. Phys. Chem. C, 2022, 126(43): 18323.
[128]
Li Y, Wang Y, Zhang G H. J Am Ceram Soc., 2023, 106(10): 5698.
[129]
Li Z F, Zeng Q H, Yu Y, Liu Y, Chen A Q, Guan J Z, Wang H H, Liu W, Liu X, Liu X F, Zhang L Y. Chem. Eng. J., 2023, 452: 139366.
[130]
Liu L, Liu T H, Xu C, Zhao W Y, Fan J P, Liu J, Ma X G, Fu W S. Nano Lett., 2024, 24(9): 2831.
[131]
Zhang M Y, Luo K L, Fan Y N, Lu X Y, Ye J, Lu N N, Dong J L, Niu Q, Zhang J J, Zhang P F, Dai S. Chem. Eng. J., 2024, 493: 152758.
[132]
Liu H, Wang Y H, Chen J J, Yi X, Yang H, Yuan X Y, Zhao Y J. J. Power Sources, 2025, 632: 236402.
[133]
Dai Y, Tu X Y, Yue K H, Wan Y J, Zhao P, Shi X R, Huang F Q, Yan Y. Adv. Funct. Mater., 2025, 35(12): 2417211.
[134]
Shang Y, Wang F Q, Li Y, Liang L M, Hao Q Y, Liu H. J. Alloys Compd., 2024, 992: 174574.
[135]
Li X M, Xie Z K, Roy S, Gao L Q, Liu J, Zhao B, Wei R, Tang B J, Wang H Y, Ajayan P, Tang K Y. Adv. Mater., 2025, 37(10): 2410295.
[136]
Zhang C Y, Li H, Su M F, Li S F, Gao F, Lu Q Y. Chem. Sci., 2024, 15(46): 19359.
[137]
Seh Z, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J, Jaramillo T. Science, 2017, 355(6321): eaad4998.
[138]
Yuste R. Nat. Rev. Neurosci., 2015, 16(8): 487.
[139]
Islam M M, Murase K. Neural Netw., 2001, 14(9): 1265.
[140]
Chapelle O, Haffner P, Vapnik V N. IEEE Trans. Neural Netw., 1999, 10(5): 1055.
[141]
Rokach L. Inf. Fusion, 2016, 27: 111.
[142]
Wang X J, Ye S, Hu W, Sharman E, Liu R, Liu Y, Luo Y, Jiang J. J. Am. Chem. Soc., 2020, 142(17): 7737.
[143]
Jayabharathi J, Thanikachalam V, Karthikeyan B, Sangamithirai M, Vijayarangan M. J. Ind. Eng. Chem., 2025, 146: 136.
[144]
Tukur P, Wei Y, Zhang Y N, Chen H N, Lin Y W, He S, Mo Y R, Wei J J. Small, 2025, 21(21): 2501946.
[145]
Reker D, Schneider P, Schneider G. Chem. Sci., 2016, 7(6): 3919.
[146]
Nie S Y, University T, Xiang Y, University D, Wu L, Lin G, Liu Q D, University T, Chu S Q, Wang X, University T. J. Am. Chem. Soc., 2024, 146(43): 29325.
[147]
Kim M, Kim Y, Ha M Y, Shin E, Kwak S J, Park M, Kim I D, Jung W B, Lee W B, Kim Y, Jung H T. Adv. Mater., 2023, 35(17): 2211497.
[148]
Perumal S, Han D B, Marimuthu T, Lim T, Kim H W, Seo J. Adv. Funct. Mater., 2025, 35(30): 2424887.
[149]
Liu S J, Yang C. Metals, 2024, 14(2): 235.
[150]
Li W, Wang D D, Zhang Y Q, Tao L, Wang T H, Zou Y Q, Wang Y Y, Chen R, Wang S Y. Adv. Mater., 2020, 32(19): 1907879.
[151]
Xie C, Yan D F, Li H, Du S Q, Chen W, Wang Y Y, Zou Y Q, Chen R, Wang S Y. ACS Catal., 2020, 10(19): 11082.
[152]
Tang T M, Bai X, Wang Z L, Guan J Q. Chem. Sci., 2024, 15(14): 5082.
[153]
Zhang B Z, Deng D, Chen J, Li Y, Yuan M W, Xiao W M, Wang S H, Wang X L, Zhang P F, Shu Y, Shi S L, Chen C. ACS Appl. Mater. Interfaces, 2023, 15(45): 5270.
[154]
Liu Y F, Ye C C, Chen L, Fan J B, Liu C, Xue L, Sun J W, Zhang W Q, Wang X, Xiong P, Zhu J W. Adv. Funct. Mater., 2024, 34(25): 2314820.
[155]
Huang K, Zhang B W, Wu J S, Zhang T Y, Peng D D, Cao X, Zhang Z, Li Z, Huang Y Z. J. Mater. Chem. A, 2020, 8(24): 11938.
[156]
Glasscott M W, Pendergast A D, Goines S, Bishop A R, Hoang A T, Renault C, Dick J E. Nat. Commun., 2019, 10: 2650.
[157]
Wang X, Zuo Y, Horta S, He R, Yang L L, Ostovari Moghaddam A, Ibáñez M, Qi X Q, Cabot A. ACS Appl. Mater. Interfaces, 2022, 14(42): 48212.
[158]
Zhai B X, Gong J, Liu L P, Cui X M, He Y. Fuel, 2025, 393: 134992.
[159]
Hooch Antink W, Lee S, Lee H S, Shin H, Yoo T Y, Ko W, Shim J, Na G, Sung Y E, Hyeon T. Adv. Funct. Mater., 2024, 34: 2309438.
[160]
Li B, Zhong J, Wang H, Gu J L, Lyu F C, Chen S M, Wu H K, Li L X, Zhi C Y, Lu J, Li Y Y. Angew. Chem. Int. Ed., 2024, 63(47): e202410978.
[161]
Yuan Q Y, Liu T T, Ma D, Liao Y, Wang W Z, Meng H T, You Q F, Zeng F Y, Xie M L, Huang H B, Liu C L, Liang X. J. Colloid Interface Sci., 2025, 684: 783.
[162]
Zhou X C, Zhu H, Fu S, Lan S, Hahn H, Zeng J R, Feng T. Small, 2024, 20(47): 2405596.

Funding

National Natural Science Foundation of China(52072310)
PDF(30198 KB)

Accesses

Citation

Detail

Sections
Recommended

/