The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation

Zhang Huidi, Li Zijie, Shi Weiqun

Prog Chem ›› 2023, Vol. 35 ›› Issue (3) : 475-495.

PDF(15802 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(15802 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (3) : 475-495. DOI: 10.7536/PC220810
Review

The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation

Author information +
History +

Abstract

Covalent organic frameworks (COFs) are a class of crystalline organic porous polymers with long-range ordered structures prepared by reversible reactions. Due to high radiation resistance, structural designability and functionalization, COFs are expected to play a role in the efficient adsorption of radionuclides and the exploration of interaction mechanism. However, the reversibility of typical linkage bonds causes the limited chemical stability of COFs. This paper reviews the improvement strategies towards chemical stability of COFs (including the decrease of reversibility of linkage bonds, the post synthetic transformation from reversible bonds to irreversible ones, and the construction of hydrophobic environment around linkage bonds), crystalline control (including the influence of synthesis conditions, in layer coplanar and interlayer interaction for two-dimensional COFs and the crystallization of amorphous polymers), functionalization methods and the applications of COFs in the separation and enrichment of radionuclides. The interaction between radionuclides and COFs could be optimized by enhancing the strength of COFs skeleton, introducing special functional groups or changing the size of monomers. The application prospect and research focus of COFs in radionuclide separation are prospected.

Key words

covalent organic framework / chemical stability / crystallinity control / functionalization / radionuclide

Cite this article

Download Citations
Zhang Huidi , Li Zijie , Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation[J]. Progress in Chemistry. 2023, 35(3): 475-495 https://doi.org/10.7536/PC220810

References

[1]
Baldwin L A, Crowe J W, Pyles D A, McGrier P L. J. Am. Chem. Soc., 2016, 138(46): 15134.
[2]
Zhuang S T, Liu Y, Wang J L. J. Hazard. Mater., 2020, 383: 121126.
[3]
Zhang B, Mao H Y, Matheu R, Reimer J A, Alshmimri S A, Alshihri S, Yaghi O M. J. Am. Chem. Soc., 2019, 141(29): 11420.
[4]
El-Kaderi H M, Hunt J R, Mendoza-CortÉs J L, CôtÉ A P, Taylor R E, O’Keeffe M, Yaghi O M. Science, 2007, 316(5822): 268.
[5]
Guo J, Xu Y H, Jin S B, Chen L, Kaji T, Honsho Y, Addicoat M A, Kim J, Saeki A, Ihee H, Seki S, Irle S, Hiramoto M, Gao J, Jiang D L. Nat. Commun., 2013, 4: 2736.
[6]
Nagai A, Guo Z Q, Feng X, Jin S B, Chen X, Ding X S, Jiang D L. Nat. Commun., 2011, 2: 536.
[7]
Xu H, Chen X, Gao J, Lin J B, Addicoat M, Irle S, Jiang D L. Chem. Commun., 2014, 50(11): 1292.
[8]
Zhou T, Gong Y and Guo J, J. Funct Polym, 2018, 31: 189.
[9]
Zhang M, Guo X, Li X, Li X, Li Y, Li S and Ma L. J. Radioanal. Nucl. Chem, 2019, 41: 60.
[10]
Zhang A and Ai Y. Prog. Chem., 2020, 32: 1564.
[11]
CôtÉ A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.
[12]
Uribe-Romo F J, Hunt J R, Furukawa H, Klöck C, O’Keeffe M, Yaghi O M. J. Am. Chem. Soc., 2009, 131(13): 4570.
[13]
Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133(49): 19816.
[14]
Xu H, Gao J, Jiang D L. Nat. Chem., 2015, 7(11): 905.
[15]
Uribe-Romo F J, Doonan C J, Furukawa H, Oisaki K, Yaghi O M. J. Am. Chem. Soc., 2011, 133(30): 11478.
[16]
Yu J, Yuan L, Wang S, Lan J, Zheng L, Xu C, Chen J, Wang L, Huang Z, Tao W, Cai Z, Gibson J, Shi W. CCS Chemistry, 2019, 1: 286.
[17]
Dalapati S, Jin S B, Gao J, Xu Y H, Nagai A, Jiang D L. J. Am. Chem. Soc., 2013, 135(46): 17310.
[18]
Li Z P, Zhi Y F, Feng X, Ding X S, Zou Y C, Liu X M, Mu Y. Chem. Eur. J., 2015, 21(34): 12079.
[19]
Yu S Y, Mahmood J, Noh H J, Seo J M, Jung S M, Shin S H, Im Y K, Jeon I Y, Baek J B. Angew. Chem. Int. Ed., 2018, 57(28): 8438.
[20]
Kandambeth S, Mallick A, Lukose B, Mane M V, Heine T, Banerjee R. J. Am. Chem. Soc., 2012, 134(48): 19524.
[21]
Das G, Balaji Shinde D, Kandambeth S, Biswal B P, Banerjee R. Chem. Commun., 2014, 50(84): 12615.
[22]
Fang Q R, Zhuang Z B, Gu S, Kaspar R B, Zheng J, Wang J H, Qiu S L, Yan Y S. Nat. Commun., 2014, 5: 4503.
[23]
Jiang L C, Tian Y Y, Sun T, Zhu Y L, Ren H, Zou X Q, Ma Y H, Meihaus K R, Long J R, Zhu G S. J. Am. Chem. Soc., 2018, 140(46): 15724.
[24]
Nagai A, Chen X, Feng X, Ding X S, Guo Z Q, Jiang D L. Angew. Chem. Int. Ed., 2013, 52(13): 3770.
[25]
Yang Z F, Liu J J, Li Y S, Zhang G, Xing G L, Chen L. Angewandte Chemie Int. Ed., 2021, 60(38): 20754.
[26]
Zhang B, Wei M F, Mao H Y, Pei X K, Alshmimri S A, Reimer J A, Yaghi O M. J. Am. Chem. Soc., 2018, 140(40): 12715.
[27]
Guan X Y, Li H, Ma Y C, Xue M, Fang Q R, Yan Y S, Valtchev V, Qiu S L. Nat. Chem., 2019, 11(6): 587.
[28]
Yue Y, Cai P Y, Xu K, Li H Y, Chen H Z, Zhou H C, Huang N. J. Am. Chem. Soc., 2021, 143(43): 18052.
[29]
Zhao C F, Lyu H, Ji Z, Zhu C H, Yaghi O M. J. Am. Chem. Soc., 2020, 142(34): 14450.
[30]
Zhuang X D, Zhao W X, Zhang F, Cao Y, Liu F, Bi S, Feng X L. Polym. Chem., 2016, 7(25): 4176.
[31]
Wei S C, Zhang F, Zhang W B, Qiang P R, Yu K J, Fu X B, Wu D Q, Bi S, Zhang F. J. Am. Chem. Soc., 2019, 141(36): 14272.
[32]
Jin E Q, Li J, Geng K Y, Jiang Q H, Xu H, Xu Q, Jiang D L. Nat. Commun., 2018, 9: 4143.
[33]
Acharjya A, Pachfule P, Roeser J, Schmitt F J, Thomas A. Angew. Chem. Int. Ed., 2019, 58(42): 14865.
[34]
Lyu H, Diercks C S, Zhu C H, Yaghi O M. J. Am. Chem. Soc., 2019, 141(17): 6848.
[35]
Meng F C, Bi S, Sun Z B, Jiang B, Wu D Q, Chen J S, Zhang F. Angewandte Chemie Int. Ed., 2021, 60(24): 13614.
[36]
Nandi S, Singh S K, Mullangi D, Illathvalappil R, George L, Vinod C P, Kurungot S, Vaidhyanathan R. Adv. Energy Mater., 2016, 6(24): 1601189.
[37]
Bai C, Zhang M, Bo L, Yin T and Li S. J. Hazard. Mater., 2015, 300: 368.
[38]
Zhang S, Zhao X S, Li B, Bai C Y, Li Y, Wang L, Wen R, Zhang M C, Ma L J, Li S J. J. Hazard. Mater., 2016, 314: 95.
[39]
Haase F, Troschke E, Savasci G, Banerjee T, Duppel V, Dörfler S, Grundei M M J, Burow A M, Ochsenfeld C, Kaskel S, Lotsch B V. Nat. Commun., 2018, 9: 2600.
[40]
Wang K W, Jia Z F, Bai Y, Wang X, Hodgkiss S E, Chen L J, Chong S Y, Wang X Y, Yang H F, Xu Y J, Feng F, Ward J W, Cooper A I. J. Am. Chem. Soc., 2020, 142(25): 11131.
[41]
Seo J M, Noh H J, Jeong H Y, Baek J B. J. Am. Chem. Soc., 2019, 141(30): 11786.
[42]
Wei P F, Qi M Z, Wang Z P, Ding S Y, Yu W, Liu Q, Wang L K, Wang H Z, An W K, Wang W. J. Am. Chem. Soc., 2018, 140(13): 4623.
[43]
Wang Y C, Liu H, Pan Q Y, Wu C Y, Hao W B, Xu J, Chen R Z, Liu J, Li Z B, Zhao Y J. J. Am. Chem. Soc., 2020, 142(13): 5958.
[44]
Li X L, Zhang C L, Cai S L, Lei X H, Altoe V, Hong F, Urban J J, Ciston J, Chan E M, Liu Y. Nat. Commun., 2018, 9: 2998.
[45]
Li X T, Zou J, Wang T H, Ma H C, Chen G J, Dong Y B. J. Am. Chem. Soc., 2020, 142(14): 6521.
[46]
Yang S L, Lv H W, Zhong H, Yuan D Q, Wang X C, Wang R H. Angewandte Chemie Int. Ed., 2022, 61(10): e202115655.
[47]
Su Y, Wan Y J, Xu H, Otake K I, Tang X H, Huang L B, Kitagawa S, Gu C. J. Am. Chem. Soc., 2020, 142(31): 13316.
[48]
Waller P J, Lyle S J, Osborn Popp T M, Diercks C S, Reimer J A, Yaghi O M. J. Am. Chem. Soc., 2016, 138(48): 15519.
[49]
Zhou Z B, Han X H, Qi Q Y, Gan S X, Ma D L, Zhao X. J. Am. Chem. Soc., 2022, 144(3): 1138.
[50]
Liu H Y, Chu J, Yin Z L, Cai X, Zhuang L, Deng H X. Chem, 2018, 4(7): 1696.
[51]
Grunenberg L, Savasci G, Terban M W, Duppel V, Moudrakovski I, Etter M, Dinnebier R E, Ochsenfeld C, Lotsch B V. J. Am. Chem. Soc., 2021, 143(9): 3430.
[52]
Zhang M C, Li Y, Yuan W L, Guo X H, Bai C Y, Zou Y D, Long H H, Qi Y, Li S J, Tao G H, Xia C Q, Ma L J. Angew. Chem. Int. Ed., 2021, 60(22): 12396.
[53]
Hu J Y, Zanca F, McManus G J, Riha I A, Nguyen H G T, Shirley W, Borcik C G, Wylie B J, Benamara M, van Zee R D, Moghadam P Z, Beyzavi H. ACS Appl. Mater. Interfaces, 2021, 13(18): 21740.
[54]
Qian C, Qi Q Y, Jiang G F, Cui F Z, Tian Y, Zhao X. J. Am. Chem. Soc., 2017, 139(19): 6736.
[55]
Zhou Z B, Tian P J, Yao J, Lu Y, Qi Q Y, Zhao X. Nat. Commun., 2022, 13: 2180.
[56]
Qian H L, Meng F L, Yang C X, Yan X P. Angew. Chem. Int. Ed., 2020, 59(40): 17607.
[57]
Waller P J, AlFaraj Y S, Diercks C S, Jarenwattananon N N, Yaghi O M. J. Am. Chem. Soc., 2018, 140(29): 9099.
[58]
Du Y, Mao K M, Kamakoti P, Ravikovitch P, Paur C, Cundy S, Li Q C, Calabro D. Chem. Commun., 2012, 48(38): 4606.
[59]
Du Y, Calabro D, Wooler B, Kortunov P, Li Q C, Cundy S, Mao K M. Chem. Mater., 2015, 27(5): 1445.
[60]
Tao S S, Zhai L P, Dinga Wonanke A D, Addicoat M A, Jiang Q H, Jiang D L. Nat. Commun., 2020, 11: 1981.
[61]
Lanni L M, Tilford R W, Bharathy M, Lavigne J J. J. Am. Chem. Soc., 2011, 133(35): 13975.
[62]
Han X, Xia Q C, Huang J J, Liu Y, Tan C X, Cui Y. J. Am. Chem. Soc., 2017, 139(25): 8693.
[63]
Wu X W, Han X, Liu Y H, Liu Y, Cui Y. J. Am. Chem. Soc., 2018, 140(47): 16124.
[64]
Liu Y, Li W, Yuan C, Jia L, Liu Y, Huang A and Cui Y. Angew. Chem. Int. Ed., 2022, 61.
[65]
Sun Q, Aguila B, Perman J A, Butts T, Xiao F S, Ma S Q. Chem, 2018, 4(7): 1726.
[66]
Wu X W, Hong you-lee, Xu B Q, Nishiyama Y, Jiang W, Zhu J W, Zhang G, Kitagawa S, Horike S. J. Am. Chem. Soc., 2020, 142(33): 14357.
[67]
Wang R, Kong W F, Zhou T, Wang C C, Guo J. Chem. Commun., 2021, 57(3): 331.
[68]
Zhao W, Yan P Y, Li B Y, Bahri M, Liu L J, Zhou X, Clowes R, Browning N D, Wu Y, Ward J W, Cooper A I. J. Am. Chem. Soc., 2022, 144(22): 9902.
[69]
Li Y S, Chen Q, Xu T T, Xie Z, Liu J J, Yu X, Ma S Q, Qin T S, Chen L. J. Am. Chem. Soc., 2019, 141(35): 13822.
[70]
Liang R R, Cui F Z, Ru-Han A, Qi Q Y, Zhao X. CCS Chem., 2020, 2(2): 139.
[71]
Xie Z, Wang B, Yang Z F, Yang X, Yu X, Xing G L, Zhang Y H, Chen L. Angew. Chem. Int. Ed., 2019, 58(44): 15742.
[72]
Kandambeth S, Shinde D B, Panda M K, Lukose B, Heine T, Banerjee R. Angew. Chem. Int. Ed., 2013, 52(49): 13052.
[73]
Chen X, Addicoat M, Jin E Q, Zhai L P, Xu H, Huang N, Guo Z Q, Liu L L, Irle S, Jiang D L. J. Am. Chem. Soc., 2015, 137(9): 3241.
[74]
Li X, Gao Q, Wang J F, Chen Y F, Chen Z H, Xu H S, Tang W, Leng K, Ning G H, Wu J S, Xu Q H, Quek S Y, Lu Y X, Loh K P. Nat. Commun., 2018, 9: 2335.
[75]
Qian C, Zhou W Q, Qiao J S, Wang D D, Li X, Teo W L, Shi X Y, Wu H W, Di J, Wang H, Liu G F, Gu L, Liu J W, Feng L L, Liu Y C, Quek S Y, Loh K P, Zhao Y L. J. Am. Chem. Soc., 2020, 142(42): 18138.
[76]
Peng Y W, Li L X, Zhu C Z, Chen B, Zhao M T, Zhang Z C, Lai Z C, Zhang X, Tan C L, Han Y, Zhu Y H, Zhang H. J. Am. Chem. Soc., 2020, 142(30): 13162.
[77]
Halder A, Karak S, Addicoat M, Bera S, Chakraborty A, Kunjattu S H, Pachfule P, Heine T, Banerjee R. Angew. Chem. Int. Ed., 2018, 57(20): 5797.
[78]
Halder A, Ghosh M, Khayum M A, Bera S, Addicoat M, Sasmal H S, Karak S, Kurungot S, Banerjee R. J. Am. Chem. Soc., 2018, 140(35): 10941.
[79]
Li L, Lu F, Xue R, Ma B L, Li Q, Wu N, Liu H, Yao W Q, Guo H, Yang W. ACS Appl. Mater. Interfaces, 2019, 11(29): 26355.
[80]
Zhou T, Wang L, Huang X Y, Unruangsri J, Zhang H L, Wang R, Song Q L, Yang Q Y, Li W H, Wang C C, Takahashi K, Xu H X, Guo J. Nat. Commun., 2021, 12: 3934.
[81]
Chen X, Addicoat M, Irle S, Nagai A, Jiang D L. J. Am. Chem. Soc., 2013, 135(2): 546.
[82]
Tan J, Namuangruk S, Kong W F, Kungwan N, Guo J, Wang C C. Angew. Chem. Int. Ed., 2016, 55(45): 13979.
[83]
Stewart D, Antypov D, Dyer M S, Pitcher M J, Katsoulidis A P, Chater P A, Blanc F, Rosseinsky M J. Nat. Commun., 2017, 8: 1102.
[84]
Zhu D Y, Li X Y, Li Y L, Barnes M, Tseng C P, Khalil S, Rahman M M, Ajayan P M, Verduzco R. Chem. Mater., 2021, 33(1): 413.
[85]
Zhai Y F, Liu G Y, Jin F C, Zhang Y Y, Gong X F, Miao Z, Li J H, Zhang M Y, Cui Y M, Zhang L Y, Liu Y, Zhang H X, Zhao Y L, Zeng Y F. Angew. Chem. Int. Ed., 2019, 58(49): 17679.
[86]
Fan C Y, Wu H, Guan J Y, You X D, Yang C, Wang X Y, Cao L, Shi B B, Peng Q, Kong Y, Wu Y Z, Ali Khan N, Jiang Z Y. Angew. Chem. Int. Ed., 2021, 60(33): 18051.
[87]
Zhang T, Zhang G, Chen L. Acc. Chem. Res., 2022, 55(6): 795.
[88]
Yu J P, Lan J H, Wang S, Zhang P C, Liu K, Yuan L Y, Chai Z F, Shi W Q. Dalton Trans., 2021, 50(11): 3792.
[89]
Huang N, Krishna R, Jiang D L. J. Am. Chem. Soc., 2015, 137(22): 7079.
[90]
Royuela S, García-Garrido E, Martín Arroyo M, Mancheño M J, Ramos M M, González-Rodríguez D, Somoza Á, Zamora F, Segura J L. Chem. Commun., 2018, 54(63): 8729.
[91]
Huang N, Chen X, Krishna R, Jiang D L. Angew. Chem. Int. Ed., 2015, 54(10): 2986.
[92]
Lu Q Y, Ma Y C, Li H, Guan X Y, Yusran Y, Xue M, Fang Q R, Yan Y S, Qiu S L, Valtchev V. Angew. Chem. Int. Ed., 2018, 57(21): 6042.
[93]
Wang Y, Xie M S, Lan J H, Yuan L Y, Yu J P, Li J Q, Peng J, Chai Z F, Gibson J K, Zhai M L, Shi W Q. Chem, 2020, 6(10): 2796.
[94]
Bai C Y, Zhang M C, Li B, Zhao X S, Zhang S, Wang L, Li Y, Zhang J, Ma L J, Li S J. RSC Adv., 2016, 6(45): 39150.
[95]
Li J, Yang X D, Bai C Y, Tian Y, Li B, Zhang S, Yang X Y, Ding S D, Xia C Q, Tan X Y, Ma L J, Li S J. J. Colloid Interface Sci., 2015, 437: 211.
[96]
Li Z D, Zhang H Q, Xiong X H, Luo F. J. Solid State Chem., 2019, 277: 484.
[97]
Xiong X H, Yu Z W, Gong L L, Tao Y, Gao Z, Wang L, Yin W H, Yang L X, Luo F. Adv. Sci., 2019, 6(16): 1900547.
[98]
Sun Q, Aguila B, Earl L D, Abney C W, Wojtas L, Thallapally P K, Ma S Q. Adv. Mater., 2018, 30(20): 1705479.
[99]
Cui W R, Zhang C R, Jiang W, Li F F, Liang R P, Liu J W, Qiu J D. Nat. Commun., 2020, 11: 436.
[100]
Li F F, Cui W R, Jiang W, Zhang C R, Liang R P, Qiu J D. J. Hazard. Mater., 2020, 392: 122333.
[101]
Zhang C R, Cui W R, Jiang W, Li F F, Wu Y D, Liang R P, Qiu J D. Environ. Sci.: Nano, 2020, 7(3): 842.
[102]
Li X, Qi Y, Yue G Z, Wu Q X, Li Y, Zhang M C, Guo X H, Li X F, Ma L J, Li S J. Green Chem., 2019, 21(3): 649.
[103]
Zhang J, Zhou L, Jia Z, Li X and Ma L. Nanoscale, 2020, 12: 24044.
[104]
Li Y, Guo X H, Li X F, Zhang M C, Jia Z M, Deng Y, Tian Y, Li S J, Ma L J. Angew. Chem., 2020, 132(10): 4197.
[105]
Cui W R, Li F F, Xu R H, Zhang C R, Chen X R, Yan R H, Liang R P, Qiu J D. Angew. Chem. Int. Ed., 2020, 59(40): 17684.
[106]
Hao M J, Chen Z S, Liu X L, Liu X H, Zhang J Y, Yang H, Waterhouse G I N, Wang X K, Ma S Q. CCS Chem., 2022, 4(7): 2294.
[107]
Yin Z J, Xu S Q, Zhan T G, Qi Q Y, Wu Z Q, Zhao X. Chem. Commun., 2017, 53(53): 7266.
[108]
An S H, Zhu X, He Y Y, Yang L, Wang H, Jin S B, Hu J, Liu H L. Ind. Eng. Chem. Res., 2019, 58(24): 10495.
[109]
Pan X W, Qin X H, Zhang Q H, Ge Y S, Ke H Z, Cheng G E. Microporous Mesoporous Mater., 2020, 296: 109990.
[110]
Li J H, Zhang H X, Zhang L Y, Wang K, Wang Z K, Liu G Y, Zhao Y L, Zeng Y F. J. Mater. Chem. A, 2020, 8(19): 9523.
[111]
He L W, Liu S T, Chen L, Dai X, Li J, Zhang M X, Ma F Y, Zhang C, Yang Z X, Zhou R H, Chai Z F, Wang S A. Chem. Sci., 2019, 10(15): 4293.

Funding

National Science Fund for Distinguished Young Scholars(21925603)
National Science Foundation of China(11975016)
PDF(15802 KB)

Accesses

Citation

Detail

Sections
Recommended

/