Preparation of Heteroatom Doped Graphene and Its Application as Electrode Materials for Supercapacitors

Yunpeng Wu, Xiaofeng Wang, Benxian Li, Xudong Zhao, Xiaoyang Liu

Prog Chem ›› 2023, Vol. 35 ›› Issue (7) : 1005-1017.

PDF(12619 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(12619 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (7) : 1005-1017. DOI: 10.7536/PC220811
Review

Preparation of Heteroatom Doped Graphene and Its Application as Electrode Materials for Supercapacitors

Author information +
History +

Abstract

Owing to its vast surface area and remarkable electrical conductivity, graphene has attracted extensive attention in the realm of electrochemical energy storage. Nevertheless, its volumetric energy density as an electrode material is quite low, thus presenting certain difficulties in its application as an electrode material. Heteroatom doping is a viable approach to enhance the electrochemical properties of graphene, thereby augmenting the energy storage capability of graphene as an electrode material. This paper provides a summary of the preparation of heteroatom-doped graphene, examines how heteroatom doping affects graphene’s electrochemical properties, explores the application of graphene in supercapacitors, and finally looks ahead to the future development course of this research domain.

Contents

1 Introduction

2 Preparation of heteroatom doped graphene

2.1 Chemical vapor deposition(CVD)

2.2 Chemical synthesis

2.3 Mechanical ball milling

2.4 Hydrothermal

2.5 Other methods

3 Application of heteroatom doped graphene as electrode material for supercapacitor

3.1 Nitrogen doping

3.2 Boron doping

3.3 Phosphorus doping

3.4 Sulfur doping

3.5 Other heteroatoms doping

3.6 Co-doping

4 Conclusion and outlook

Key words

graphene / heteroatoms-doping / supercapacitors / energy storage

Cite this article

Download Citations
Yunpeng Wu , Xiaofeng Wang , Benxian Li , et al . Preparation of Heteroatom Doped Graphene and Its Application as Electrode Materials for Supercapacitors[J]. Progress in Chemistry. 2023, 35(7): 1005-1017 https://doi.org/10.7536/PC220811

References

[1]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.
[2]
Pan X R, Ji J H, Zhang N N, Xing M Y. Chin. Chemical Lett., 2020, 31(6): 1462.
[3]
Ares P, Novoselov K S. Nano Mater. Sci., 2022, 4(1): 3.
[4]
Han J H, Huang G, Wang Z L, Lu Z, Du J, Kashani H, Chen M W. Adv. Mater., 2018, 30(38): 1803588.
[5]
Nandee R, Chowdhury M A, Shahid A, Hossain N, Rana M. Results Eng., 2022, 15: 100474.
[6]
Sung Y Y, Vejayan H, Baddeley C J, Richardson N V, Grillo F, Schaub R. ACS Nano, 2022, 16(7): 10281.
[7]
Luo H, Yu G. Chem. Mater., 2022, 34(8): 3588.
[8]
Zhu J Y, Wang L X, Gan X M, Tang T T, Qin F W, Luo W X, Li Q Q, Guo N N, Zhang S, Jia D Z, Song H H. Energy Storage Mater., 2022, 47: 158.
[9]
Mondal S, Das S R, Sahoo L, Dutta S, Gautam U K. J. Am. Chem. Soc., 2022, 144(6): 2580.
[10]
Guo T H, Wang H Y, Han W H, Zhang J, Wang C L, Ma T S, Zhang Z Q, Deng Z Q, Chen D, Xu W W, Liu X H, Huang L K, Hu Z Y, Zhu Y J. Nano Energy, 2022, 98: 107298.
[11]
Chen W Q, Xiao P S, Chen H H, Zhang H T, Zhang Q C, Chen Y S. Adv. Mater., 2019, 31(9): 1802403.
[12]
Lin X R, Hu Y X, Hu K L, Lin X, Xie G Q, Liu X J, Reddy K M, Qiu H J. ACS Mater. Lett., 2022, 4(5): 978.
[13]
Yoshii T, Chida K, Nishihara H, Tani F. Chem. Commun., 2022, 58(22): 3578.
[14]
Wang X W, Sun G Z, Routh P, Kim D H, Huang W, Chen P. Chem. Soc. Rev., 2014, 43(20): 7067.
[15]
Tiwari S K, Mishra R K, Ha S K, Huczko A. ChemNanoMat, 2018, 4(7): 598.
[16]
Zhan D, Yan J X, Lai L F, Ni Z H, Liu L, Shen Z X. Adv. Mater., 2012, 24(30): 4055.
[17]
Yang Y L, Wu M G, Zhu X W, Xu H, Ma S, Zhi Y F, Xia H, Liu X M, Pan J, Tang J Y, Chai S P, Palmisano L, Parrino F, Liu J L, Ma J Z, Wang Z L, Tan L, Zhao Y F, Song Y F, Singh P, Raizada P, Jiang D L, Li D, Geioushy R A, Ma J Z, Zhang J T, Hu S, Feng R J, Liu G, Liu M H, Li Z H, Shao M F, Li N, Peng J H, Ong W J, Kornienko N, Xing Z Y, Fan X J, Ma J M. Chin. Chemical Lett., 2019, 30(12): 2065.
[18]
Shao G F, Ovsianytskyi O, Bekheet M F, Gurlo A. Chem. Commun., 2020, 56(3): 450.
[19]
Vangelidis I, Bellas D V, Suckow S, Dabos G, Castilla S, Koppens F H L, Ferrari A C, Pleros N, Lidorikis E. ACS Photonics, 2022, 9(6): 1992.
[20]
Ye X H, Qi M, Yang H Y, Mediko F S, Qiang H, Yang Y L, He C Z. Chem. Eng. Sci., 2022, 247: 117017.
[21]
Chen K N, Wang Q R, Niu Z Q, Chen J. J. Energy Chem., 2018, 27(1): 12.
[22]
Wang Y M, Wu X L, Han Y Q, Li T X. J. Energy Storage, 2021, 42: 103053.
[23]
Kumar R, Sahoo S, Joanni E, Singh R K, Maegawa K, Tan W K, Kawamura G, Kar K K, Matsuda A. Mater. Today, 2020, 39: 47.
[24]
Rösicke F, Gluba M A, Shaykhutdinov T, Sun G G, Kratz C, Rappich J, Hinrichs K, Nickel N H. Chem. Commun., 2017, 53(67): 9308.
[25]
Sun X L, Zhang J, Wang X N, Zhang C Y, Hu P G, Mu Y B, Wan X B, Guo Z X, Lei S B. Chem. Commun., 2013, 49(87): 10317.
[26]
Sealy C. Nano Today, 2022, 43: 101442.
[27]
Muangrat W, Obata M, Htay M T, Fujishige M, Dulyaseree P, Wongwiriyapan W, Hashimoto Y. FlatChem, 2021, 29: 100292.
[28]
Ion-Ebrşu D, Dorin Andrei R, Enache S, Căprărescu S, Negrilă C C, Jianu C, Enache A, Boeraşu I, Carcadea E, Varlam M, Varlam B Ş, Ren J W. Materials, 2021, 14(17): 4952.
[29]
Ullah S, Liu Y, Hasan M, Zeng W W, Shi Q T, Yang X Q, Fu L, Ta H Q, Lian X Y, Sun J Y, Yang R Z, Liu L J, Rümmeli M H. Nano Res., 2022, 15(2): 1310.
[30]
Zhai Z H, Shen H L, Chen J Y, Li X M, Li Y F. ACS Appl. Mater. Interfaces, 2020, 12(2): 2805.
[31]
Arkhipova E A, Ivanov A S, Maslakov K I, Savilov S V. Electrochimica Acta, 2020, 353: 136463.
[32]
Koehler F M, Stark W J. Acc. Chem. Res., 2013, 46(10): 2297.
[33]
Amaro-Gahete J, Mora M, GutiÉrrez P, Cosano D, Esquivel D, Ruiz J R, JimÉnez-Sanchidrián C, García M C, Romero-Salguero F J. J. Phys. D: Appl. Phys., 2020, 53(43): 435202.
[34]
Rio-Castillo A E, Merino C, Díez-Barra E, Vázquez E. Nano Res., 2014, 7(7): 963.
[35]
Yi M, Shen Z G. J. Mater. Chem. A, 2015, 3(22): 11700.
[36]
Li H N, Zhang H M, Huang K K, Liang D, Zhao D D, Jiang Z Y. Ceram. Int., 2022, 48(12): 17171.
[37]
LeÓn V, Rodriguez A M, Prieto P, Prato M, Vázquez E. ACS Nano, 2014, 8(1): 563.
[38]
Wu Y P, Liu X Y, Xia D D, Sun Q S, Yu D Y, Sun S G, Liu X L, Teng Y F, Zhang W G, Zhao X D. Chin. Chemical Lett., 2020, 31(2): 559.
[39]
Wu Y P, Yu D Y, Feng Y, Han L Y, Liu X L, Zhao X D, Liu X Y. Chin. Chemical Lett., 2021, 32(12): 3841.
[40]
Liu L Y, Xie Z J, Du X M, Yu D Y, Yang B, Li B, Liu X Y. Chem. Eng. J., 2022, 430: 132815.
[41]
Tung V C, Allen M J, Yang Y, Kaner R B. Nat. Nanotechnol., 2009, 4(1): 25.
[42]
Wu Y P, Feng Y, He Z Y, Yu D Y, Xue Y, Liu X L, Han L Y, Zhao X D, Liu X Y. Chin. Chemical Lett., 2021, 32(11): 3596.
[43]
Ang P K, Wang S, Bao Q L, Thong J T L, Loh K P. ACS Nano, 2009, 3(11): 3587.
[44]
Wu Y P, Sun Q S, Yu D Y, Teng Y F, Liu X L, Feng Y, Han L Y, Zhao X D, Liu X Y. Chem. Commun., 2020, 56(13): 2016.
[45]
Jones S, Pramanik A, Kanchanapally R, Viraka Nellore B P, Begum S, Sweet C, Ray P C. ACS Sustainable Chem. Eng., 2017, 5(8): 7175.
[46]
He H J, Huang L H, Zhong Z J, Tan S Z. Appl. Surf. Sci., 2018, 441: 285.
[47]
Zakaria M R, Omar M F, Zainol Abidin M S, Md Akil H, Al Bakri Abdullah M M. Compos. A Appl. Sci. Manuf., 2022, 154: 106756.
[48]
Long D H, Li W, Ling L C, Miyawaki J, Mochida I, Yoon S H. Langmuir, 2010, 26(20): 16096.
[49]
Ge J, Zhu H W, Yang Y, Xie Y F, Wang G, Huang J, Shi L A, Schmidt O G, Yu S H. CCS Chem., 2020, 2(2): 1.
[50]
Liu H, Zhang M M, Ma T J, Wang Y, Song Z X, Wang A, Huang Z Y. Chem. Eng. Sci., 2021, 238: 116613.
[51]
Zhao Z F, Liu Y, Wan F, Wang S, Zhang N N, Liu L L, Cao A Y, Niu Z Q. Chin. Chemical Lett., 2021, 32(2): 594.
[52]
Tao S, Wu D J, Chen S M, Qian B, Chu W S, Song L. Chem. Commun., 2018, 54(60): 8379.
[53]
Sun P P, Li Z H, Zhang L, Dong C, Li Z J, Yao H C, Wang J S, Li G H. J. Alloys Compd., 2018, 750: 607.
[54]
Yu X, Pei C G, Feng L G. Chin. Chemical Lett., 2019, 30(5): 1121.
[55]
Arvas M B, Gürsu H, Gencten M, Sahin Y. J. Energy Storage, 2021, 35: 102328.
[56]
Lin L H, Fu L, Zhang K Y, Chen J, Zhang W L, Tang S L, Du Y W, Tang N J. ACS Appl. Mater. Interfaces, 2019, 11(42): 39062.
[57]
Liu Y, Shen Y T, Sun L T, Li J C, Liu C, Ren W C, Li F, Gao L B, Chen J, Liu F C, Sun Y Y, Tang N J, Cheng H M, Du Y W. Nat. Commun., 2016, 7: 10921.
[58]
Şahin M, Blaabjerg F, Sangwongwanich A. Energies, 2022, 15(3): 674.
[59]
Nithya V D. J. Energy Storage, 2021, 44: 103380.
[60]
Abbas Q, Raza R, Shabbir I, Olabi A G. J. Sci. Adv. Mater. Devices, 2019, 4(3): 341.
[61]
Li Z S, Lin J P, Li B L, Yu C L, Wang H Q, Li Q Y. J. Energy Storage, 2021, 44: 103437.
[62]
Cui L L, Xu H P, An Y R, Xu M C, Lei Z J, Jin X J. Adv. Powder Technol., 2022, 33(6): 103571.
[63]
Zhang Y, Lu J C, Li Y, Li B J, Ruan Z L, Zhang H, Hao Z L, Sun S J, Xiong W, Gao L, Chen L, Cai J M. Angewandte Chemie Int. Ed., 2022, 61(28): e202204736.
[64]
Cai J M, Pignedoli C A, Talirz L, Ruffieux P, Söde H, Liang L B, Meunier V, Berger R, Li R J, Feng X L, Müllen K, Fasel R. Nat. Nanotechnol., 2014, 9(11): 896.
[65]
Zhang Y, Yu Y, Xiao R, Du C, Wan L, Ye H, Chen J, Wang T L, Xie M J. J. Energy Storage, 2022, 54: 105299.
[66]
Su F, Zheng S H, Liu F Y, Zhang X, Su F Y, Wu Z S. Chin. Chemical Lett., 2021, 32(2): 914.
[67]
Mishra R K, Choi G J, Sohn Y, Lee S H, Gwag J S. Chem. Commun., 2020, 56(19): 2893.
[68]
He X X, Tang Z, Gao L L, Wang F Y, Zhao J P, Miao Z C, Wu X Z, Zhou J, Su Y, Zhuo S P. J. Electroanal. Chem., 2020, 871: 114311.
[69]
Agnoli S, Favaro M. J. Mater. Chem. A, 2016, 4(14): 5002.
[70]
Balaji S S, Karnan M, Anandhaganesh P, Tauquir S M, Sathish M. Appl. Surf. Sci., 2019, 491: 560.
[71]
Thirumal V, Pandurangan A, Jayavel R, Ilangovan R. Synth. Met., 2016, 220: 524.
[72]
Wen Y Y, Wang B, Huang C C, Wang L Z, Hulicova-Jurcakova D. Chem. Eur. J., 2015, 21(1): 80.
[73]
Nie G S, Deng H C, Huang J, Wang C Y. Int. J. Electrochem. Sci., 2020, 15:12578.
[74]
Arvas M B, Gençten M, Sahin Y. Int. J. Energy Res., 2020, 44(3): 1624.
[75]
Rosli N H A, Lau K S, Winie T, Chin S X, Chia C H. Diam. Relat. Mater., 2021, 120: 108696.
[76]
Wang H D, Narasaki M, Zhang Z W, Takahashi K, Chen J, Zhang X. Sci. Rep., 2020, 10: 17562.
[77]
Jiang H D, Ye X K, Zhu Y C, Yue Z Y, Wang L H, Xie J L, Wan Z Q, Jia C Y. ACS Sustainable Chem. Eng., 2019, 7(23): 18844.
[78]
Wang M, Chen L L, Zhou J Q, Xu L R, Li X Y, Li L J, Li X. J. Mater. Sci., 2019, 54(1): 483.
[79]
Cheng L L, Hu Y Y, Qiao D D, Zhu Y, Wang H, Jiao Z. Electrochimica Acta, 2018, 259: 587.
[80]
Jing C, Guo X L, Xia L H, Chen Y X, Wang X, Liu X Y, Dong B Q, Dong F, Li S C, Zhang Y X. Chem. Eng. J., 2020, 379: 122305.
[81]
Zhang L L, Chen H X, Lu X Y, Wang Y, Tan L L, Sui D P, Qi W. Appl. Surf. Sci., 2020, 529: 147022.
[82]
Khandelwal M, Van Tran C, Lee J, Bin In J. Chem. Eng. J., 2022, 428: 131119.
[83]
Pham V H, Hur S H, Kim E J, Kim B S, Chung J S. Chem. Commun., 2013, 49(59): 6665.
[84]
Rotte N K, Naresh V, Muduli S, Reddy V, Srikanth V V S, Martha S K. Electrochimica Acta, 2020, 363: 137209.
[85]
Liu J L, Zhu Y R, Chen X H, Yi W J. J. Alloys Compd., 2020, 815: 152328.
[86]
Lee H J, Abdellah A, Ismail F M, Gumeci C, Dale N, Parrondo J, Higgins D C. Electrochimica Acta, 2021, 397: 139241.
[87]
Su W F, Gao D M, Zheng W C, Lu F, Liu J Y, Chen X C, Sha O, Chen L. Mater. Technol., 2020, 35(4): 195.
[88]
Jin Y N, Meng Y N, Fan W, Lu H Y, Liu T X, Wu S X. Electrochimica Acta, 2019, 318: 865.
[89]
Nankya R, Lee J, Opar D O, Jung H. Appl. Surf. Sci., 2019, 489: 552.
[90]
Muthu R N, Tatiparti S S V. Energy Storage, 2020, 2(4): e134.
[91]
Naresh V, Bhattacharjee U, Martha S K. J. Alloys Compd., 2019, 797: 595.
[92]
Zu L, Gao X, Lian H Q, Cai X M, Li C, Zhong Y, Hao Y C, Zhang Y F, Gong Z, Liu Y, Wang X D, Cui X G. Nanomaterials, 2018, 8(6): 417.
[93]
Suresh Balaji S, Sandhiya M, Sathish M. J. Energy Storage, 2021, 33: 102085.
[94]
Kan Y F, Ning G Q, Ma X L. Chin. Chemical Lett., 2017, 28(12): 2277.
[95]
Sun X Z, Liu X J, Li F. Appl. Surf. Sci., 2021, 551: 149438.
[96]
Jin T X, Chen J F, Wang C Y, Qian Y, Lu L M. J. Mater. Sci., 2020, 55(26): 12103.
[97]
Cheng H H, Yi F Y, Gao A M, Liang H F, Shu D, Zhou X P, He C, Zhu Z H. ACS Appl. Energy Mater., 2019, 2(6): 4084.

Funding

National Natural Science Foundation of China(22171101)
PDF(12619 KB)

Accesses

Citation

Detail

Sections
Recommended

/