Research Progress and Application of Flexible Thermoelectric Materials

Dong Baokun, Zhang Ting, He Fan

Prog Chem ›› 2023, Vol. 35 ›› Issue (3) : 433-444.

PDF(10369 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(10369 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (3) : 433-444. DOI: 10.7536/PC220812
Review

Research Progress and Application of Flexible Thermoelectric Materials

Author information +
History +

Abstract

Thermoelectric materials, as one new kind of energy materials, can realize the direct conversion of thermal and electrical energy, which have important applications in power generation and refrigeration. Compared with traditional thermoelectric materials, flexible thermoelectric materials demonstrate excellent application prospects in wearable devices and flexible electronics fields, due to the advantages of being bendable, a lightweight and environmentally friendly. At present, how to further improve the performance of flexible thermoelectric materials is the focus, especially the collaborative optimization of flexibility andthermoelectric properties. In this paper, we have reviewed the research progress of polymer-based flexible thermoelectric materials, carbon-based flexible thermoelectric materials and inorganic semiconductor flexible thermoelectric materials, introduced their characteristics, performance optimization and preparation methods, and summarized the applications of flexible thermoelectric materials in the fields of electronics, medicine and industry. Also, based on the shortcomings of flexible thermoelectric materials, the future research directions are prospected.

Key words

polymer flexible thermoelectric materials / carbon flexible thermoelectric materials / inorganic semiconductor flexible thermoelectric materials / performance optimization / flexible electronics fields

Cite this article

Download Citations
Dong Baokun , Zhang Ting , He Fan. Research Progress and Application of Flexible Thermoelectric Materials[J]. Progress in Chemistry. 2023, 35(3): 433-444 https://doi.org/10.7536/PC220812

References

[1]
Bell L E. Science, 2008, 321(5895): 1457.
[2]
Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D, Snyder G J. Nature, 2011, 473(7345): 66.
[3]
Thirugnanasambandam M, Iniyan S, Goic R. Renew. Sustain. Energy Rev., 2010, 14(1): 312.
[4]
Swarnkar N. JETIR, 2019, 6(5): 131.
[5]
Vining C B. Nat. Mater., 2009, 8(2): 83.
[6]
Shi X, Chen L, Uher C. Int. Mater. Rev., 2016, 61(6): 379.
[7]
He Y, Day T, Zhang T S, Liu H L, Shi X, Chen L D, Snyder G J. Adv. Mater., 2014, 26(23): 3974.
[8]
Zheng X F, Liu C X, Yan Y Y, Wang Q. Renew. Sustain. Energy Rev., 2014, 32: 486.
[9]
Gaultois M W, Sparks T D, Borg C K H, Seshadri R, Bonificio W D, Clarke D R. Chem. Mater., 2013, 25(15): 2911.
[10]
Du Y, Xu J Y, Paul B, Eklund P. Appl. Mater. Today, 2018, 12: 366.
[11]
Zhang X, Zhao L D. J. Materiomics, 2015, 1(2): 92.
[12]
Zeier W G, Zevalkink A, Gibbs Z M, Hautier G, Kanatzidis M G, Snyder G J. Angew. Chem. Int. Ed., 2016, 55(24): 6826.
[13]
Yang J, Xi L L, Qiu W J, Wu L H, Shi X, Chen L D, Yang J H, Zhang W Q, Uher C, Singh D J. Npj Comput. Mater., 2016, 2: 15015.
[14]
Hasan M N, Wahid H, Nayan N, Mohamed Ali M S. Int. J. Energy Res., 2020, 44(8): 6170.
[15]
Zhang G Q, Kirk B, Jauregui L A, Yang H R, Xu X F, Chen Y P, Wu Y. Nano Lett., 2012, 12(1): 56.
[16]
Gelbstein Y, Dashevsky Z, Dariel M P. Phys. B Condens. Matter, 2005, 363(1/4): 196.
[17]
Bathula S, Jayasimhadri M, Dhar A. Mater. Des., 2015, 87: 414.
[18]
Wang Y, Yang L, Shi X L, Shi X, Chen L D, Dargusch M S, Zou J, Chen Z G. Adv. Mater., 2019, 31(29): 1807916.
[19]
Zhang L, Shi X L, Yang Y L, Chen Z G. Mater. Today, 2021, 46: 62.
[20]
Wu P Q, He Z M, Yang M, Xu J H, Li N, Wang Z M, Li J, Ma T, Lu X, Zhang H, Zhang T. Int. J. Thermophys., 2021, 42(8): 111.
[21]
Mengistie D A, Chen C H, Boopathi K M, Pranoto F W, Li L J, Chu C W. ACS Appl. Mater. Interfaces, 2015, 7(1): 94.
[22]
Kim G H, Shao L, Zhang K, Pipe K P. Nat. Mater., 2013, 12(8): 719.
[23]
Huang D Z, Yao H Y, Cui Y T, Zou Y, Zhang F J, Wang C, Shen H G, Jin W L, Zhu J, Diao Y, Xu W, Di C A, Zhu D B. J. Am. Chem. Soc., 2017, 139(37): 13013.
[24]
Zhao W Y, Fan S F, Xiao N, Liu D Y, Tay Y Y, Yu C, Sim D, Hng H H, Zhang Q C, Boey F, Ma J, Zhao X B, Zhang H, Yan Q Y. Energy Environ. Sci., 2012, 5(1): 5364.
[25]
Wang H, Hsu J H, Yi S I, Lae Kim S, Choi K, Yang G, Yu C. Adv. Mater., 2015, 27(43): 6855.
[26]
MacLeod B A, Stanton N J, Gould I E, Wesenberg D, Ihly R, Owczarczyk Z R, Hurst K E, Fewox C S, Folmar C N, Holman Hughes K, Zink B L, Blackburn J L, Ferguson A J. Energy Environ. Sci., 2017, 10(10): 2168.
[27]
Varghese T, Hollar C, Richardson J, Kempf N, Han C, Gamarachchi P, Estrada D, Mehta R J, Zhang Y L. Sci. Rep., 2016, 6: 33135.
[28]
Jin Q, Jiang S, Zhao Y, Wang D, Qiu J H, Tang D M, Tan J, Sun D M, Hou P X, Chen X Q, Tai K P, Gao N, Liu C, Cheng H M, Jiang X. Nat. Mater., 2019, 18(1): 62.
[29]
Jiang C, Ding Y F, Cai K F, Tong L, Lu Y, Zhao W Y, Wei P. ACS Appl. Mater. Interfaces, 2020, 12(8): 9646.
[30]
Liang J S, Wang T, Qiu P F, Yang S Q, Ming C, Chen H Y, Song Q F, Zhao K P, Wei T R, Ren D D, Sun Y Y, Shi X, He J, Chen L D. Energy Environ. Sci., 2019, 12(10): 2983.
[31]
Liang J S, Qiu P F, Zhu Y, Huang H, Gao Z Q, Zhang Z, Shi X, Chen L D. Research, 2020, 2020: 6591981.
[32]
He S Y, Li Y B, Liu L, Jiang Y, Feng J J, Zhu W, Zhang J Y, Dong Z R, Deng Y, Luo J, Zhang W Q, Chen G. Sci. Adv., 2020, 6(15): eaaz8423.
[33]
Yao Q, Wang Q, Wang L M, Wang Y, Sun J, Zeng H R, Jin Z Y, Huang X L, Chen L D. J. Mater. Chem. A, 2014, 2(8): 2634.
[34]
Park J, Lee Y R, Kim M, Kim Y, Tripathi A, Kwon Y W, Kwak J, Woo H Y. ACS Appl. Mater. Interfaces, 2020, 12(1): 1110.
[35]
Zhang Q, Sun Y M, Xu W, Zhu D B. Adv. Mater., 2014, 26(40): 6829.
[36]
Ju H, Kim J. ACS Nano, 2016, 10(6): 5730.
[37]
See K C, Feser J P, Chen C E, Majumdar A, Urban J J, Segalman R A. Nano Lett., 2010, 10(11): 4664.
[38]
Zhang Y H, Heo Y J, Park M, Park S J. Polymers, 2019, 11(1): 167.
[39]
Yun J S, Choi S, Im S H. Carbon Energy, 2021, 3(5): 667.
[40]
Dey A, Bajpai O P, Sikder A K, Chattopadhyay S, Shafeeuulla Khan M A. Renew. Sustain. Energy Rev., 2016, 53: 653.
[41]
Wang L M, Yao Q, Bi H, Huang F Q, Wang Q, Chen L D. J. Mater. Chem. A, 2015, 3(13): 7086.
[42]
Xiang J L, Drzal L T. Polymer, 2012, 53(19): 4202.
[43]
Liang L R, Gao C Y, Chen G M, Guo C Y. J. Mater. Chem. C, 2016, 4(3): 526.
[44]
Du Y, Shi Y L, Meng Q F, Shen S Z. Synth. Met., 2020, 261: 116318.
[45]
Xu Q, Qu S Y, Ming C, Qiu P F, Yao Q, Zhu C X, Wei T R, He J, Shi X, Chen L D. Energy Environ. Sci., 2020, 13(2): 511.
[46]
Qu S Y, Ming C, Qiu P F, Xu K Q, Xu Q, Yao Q, Lu P, Zeng H R, Shi X, Chen L D. Energy Environ. Sci., 2021, 14(12): 6586.
[47]
Sevinçli H, Cuniberti G. Phys. Rev. B, 2010, 81(11): 113401.
[48]
Ni X X, Liang G, Wang J S, Li B W. Appl. Phys. Lett., 2009, 95(19): 192114.
[49]
Chang P H, Bahramy M S, Nagaosa N, Nikoli©#263; B K. Nano Lett., 2014, 14(7): 3779.
[50]
Kong D Y, Zhu W, Guo Z P, Deng Y. Energy, 2019, 175: 292.
[51]
Hu H P, Xia K Y, Zhu T J, Zhao X B. Chinese Journal of Rare Metals, 2020, 45(5): 513.
(胡惠平, 夏凯阳, 朱铁军, 赵新兵. 稀有金属, 2020, 45(5): 513.).
[52]
You J C, Zhan S B, Wen J, Ma Y W, Zhu Z S. Optik, 2020, 217: 164900.
[53]
Hong G S, Robinson J T, Zhang Y J, Diao S, Antaris A L, Wang Q B, Dai H J. Angew. Chem. Int. Ed., 2012, 51(39): 9818.
[54]
Alharthi S S, Alzahrani A, Razvi M A N, Badawi A, Althobaiti M G. J. Inorg. Organomet. Polym. Mater., 2020, 30(10): 3878.
[55]
Hwang I, Seol M, Kim H, Yong K. Appl. Phys. Lett., 2013, 103(2): 023902.
[56]
Hebb M H. J. Chem. Phys., 1952, 20(1): 185.
[57]
Shi X, Chen H Y, Hao F, Liu R H, Wang T, Qiu P F, Burkhardt U, Grin Y, Chen L D. Nat. Mater., 2018, 17(5): 421.
[58]
Jin M, Bai X D, Zhang R L, Zhou L N, Li R B. J. Inorg. Mater., 2022, 37(1): 101.
[59]
Wang T, Chen H Y, Qiu P F, Shi X, Chen L D. Acta Phys. Sin., 2019, 68(9): 090201.
[60]
Ferhat M, Nagao J. J. Appl. Phys., 2000, 88(2): 813.
[61]
Pei Y Z, Heinz N A, Snyder G J. J. Mater. Chem., 2011, 21(45): 18256.
[62]
Bindi L, Pingitore N E. Mineral. Mag., 2013, 77(1): 21.
[63]
Bindi L, Stanley C J, Spry P G. Mineral. Petrol., 2015, 109(4): 413.
[64]
Wei T R, Jin M, Wang Y C, Chen H Y, Gao Z Q, Zhao K P, Qiu P F, Shan Z W, Jiang J, Li R B, Chen L D, He J, Shi X. Science, 2020, 369(6503): 542.
[65]
Han G, Chen Z G, Drennan J, Zou J. Small, 2014, 10(14): 2747.
[66]
Zheng Q, Liang C Y, Jiang J Y, Li S F. Phys. Status Solidi RRL Rapid Res. Lett., 2022, 16(3): 2100418.
[67]
Dai Y J, Zhao S X, Han H, Yan Y F, Liu W H, Zhu H, Li L, Tang X, Li Y, Li H, Zhang C J. Front. Mater., 2022, 8: 816821.
[68]
Grimaldi I, Gerace T, Pipita M M, Perrotta I D, Ciuchi F, Berger H, Papagno M, Castriota M, PacilÉ D. Solid State Commun., 2020, 311: 113855.
[69]
Mosca D H, Mattoso N, Lepienski C M, Veiga W, Mazzaro I, Etgens V H, Eddrief M. J. Appl. Phys., 2002, 91(1): 140.
[70]
Shi H N, Wang D Y, Xiao Y, Zhao L D. Aggregate, 2021, 2(4): e92.
[71]
Hong M, Chen Z G, Zou J. Chin. Phys. B, 2018, 27(4): 048403.
[72]
Zhang B, Wu H, Peng K L, Shen X C, Gong X N, Zheng S K, Lu X, Wang G Y, Zhou X Y. Chin. Phys. B, 2021, 30(7): 078101.
[73]
Yang Q Y, Yang S Q, Qiu P F, Peng L M, Wei T R, Zhang Z, Shi X, Chen L D. Science, 2022, 377(6608): 854.
[74]
Shi D T, Wang R P, Wang G X, Li C, Shen X, Nie Q H. Vacuum, 2017, 145: 347.
[75]
Shen S F, Zhu W, Deng Y, Zhao H Z, Peng Y C, Wang C J. Appl. Surf. Sci., 2017, 414: 197.
[76]
Singkaselit K, Sakulkalavek A, Sakdanuphab R. Adv. Nat. Sci: Nanosci. Nanotechnol., 2017, 8(3): 035002.
[77]
Goncalves L M, Alpuim P, Min G, Rowe D M, Couto C, Correia J H. Vacuum, 2008, 82(12): 1499.
[78]
Goncalves L M, Alpuim P, Rolo A G, Correia J H. Thin Solid Films, 2011, 519(13): 4152.
[79]
Goncalves L M, Couto C, Alpuim P, Rolo A G, Völklein F, Correia J H. Thin Solid Films, 2010, 518(10): 2816.
[80]
Wang Y Y, Cai K F, Shen S, Yao X. Synth. Met., 2015, 209: 480.
[81]
Chatterjee K, Mitra M, Kargupta K, Ganguly S, Banerjee D. Nanotechnology, 2013, 24(21): 215703.
[82]
Bhardwaj N, Kundu S C. Biotechnol. Adv., 2010, 28(3): 325.
[83]
Masoumi S, O’Shaughnessy S, Pakdel A. Nano Energy, 2022, 92: 106774.
[84]
Li J Y, Dong C S, Hu J L, Liu J, Liu Y C. ACS Appl. Electron. Mater., 2021, 3(8): 3641.
[85]
Akram R, Khan J S, Qamar Z, Rafique S, Hussain M, Kayani F B. J. Mater. Sci., 2022, 57(5): 3309.
[86]
Kim S J, We J H, Cho B J. Energy Environ. Sci., 2014, 7(6): 1959.
[87]
Yabuki H, Yonezawa S, Eguchi R, Takashiri M. Sci. Rep., 2020, 10: 17031.
[88]
Patil N S, Sargar A M, Mane S R, Bhosale P N. Mater. Chem. Phys., 2009, 115(1): 47.
[89]
Zhang T, Li K W, Zhang J, Chen M, Wang Z, Ma S Y, Zhang N, Wei L. Nano Energy, 2017, 41: 35.

Funding

National Natural Science Foundation of China(51501014)
2021 Beijing Undergraduates Research Training Program(2021J00057)
2022 National Undergraduates Research Training Program of China
PDF(10369 KB)

Accesses

Citation

Detail

Sections
Recommended

/