Review on the First-Principles Calculation in Lithium-Sulfur Battery

Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng

Prog Chem ›› 2023, Vol. 35 ›› Issue (3) : 375-389.

PDF(18631 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(18631 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (3) : 375-389. DOI: 10.7536/PC220819
Review

Review on the First-Principles Calculation in Lithium-Sulfur Battery

Author information +
History +

Abstract

Lithium-sulfur (Li-S) batteries are considered as a promising next-generation high-energy battery system due to their ultrahigh theoretical capacity, energy density and the merits of sulfur in terms of abundant resource and environmental friendliness. However, their practical application is confronted with several critical problems including insulation of sulfur and discharge products, shuttle effect of soluble lithium polysulfides, and sluggish reaction kinetics of sulfur, etc. Significant progress has been achieved in addressing these problems by sulfur electrode design, functional separator/interlayer, liquid-electrolyte modification, and solid-electrolyte strategy. Nevertheless, there is still a lack of in-depth understanding of real-time dynamic reaction process and mechanism as well as electrode/electrolyte interface regulation strategy in Li-S batteries. First-principles calculation has gradually developed into an important research tool in various disciplines such as materials, chemistry and energy, facilitating to understand the properties of reaction species, interactions between molecules or/and electrons, electrochemical reaction processes and laws, and dynamic evolution of electrode/electrolyte from the molecular/atomic level. It delivers distinct advantages beyond “experimental trial and error” method in studying the multi-electron and multi-ion redox process in Li-S battery. In this paper, important advances in the application of first principles calculation to study the interactions between electrodes and polysulfides, charge-discharge reaction mechanisms, and electrolytes in Li-S batteries are comprehensively reviewed, and the current challenge and enlightening directions for application of first-principles calculation to study Li-S batteries are also prospected.

Key words

Li-S battery / first-principles / theoretical calculation / electrode materials / charge-discharge mechanism / electrolyte

Cite this article

Download Citations
Zhang Xiaofei , Li Shenhao , Wang Zhen , et al . Review on the First-Principles Calculation in Lithium-Sulfur Battery[J]. Progress in Chemistry. 2023, 35(3): 375-389 https://doi.org/10.7536/PC220819

References

[1]
Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058): 928.
[2]
Larcher D, Tarascon J M. Nat. Chem., 2015, 7(1): 19.
[3]
Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2012, 11(1): 19.
[4]
Chen Y, Wang T Y, Tian H J, Su D W, Zhang Q, Wang G X. Adv. Mater., 2021, 33(29): 2003666.
[5]
Chung S H, Manthiram A. Adv. Mater., 2019, 31(27): 1901125.
[6]
Yang Y, Zheng G Y, Cui Y. Chem. Soc. Rev., 2013, 42(7): 3018.
[7]
He J R, Manthiram A. Energy Storage Mater., 2019, 20: 55.
[8]
Huang L, Li J J, Liu B, Li Y H, Shen S H, Deng S J, Lu C W, Zhang W K, Xia Y, Pan G X, Wang X L, Xiong Q Q, Xia X H, Tu J P. Adv. Funct. Mater., 2020, 30(22): 1910375.
[9]
Zhang M, Chen W, Xue L X, Jiao Y, Lei T Y, Chu J W, Huang J W, Gong C H, Yan C Y, Yan Y C, Hu Y, Wang X F, Xiong J. Adv. Energy Mater., 2020, 10(2): 1903008.
[10]
Yang X F, Luo J, Sun X L. Chem. Soc. Rev., 2020, 49(7): 2140.
[11]
Feng S, Fu Z H, Chen X, Zhang Q. InfoMat, 2022, 4(3): e12304.
[12]
Fan Y C, Chen X, Legut D, Zhang Q F. Energy Storage Mater., 2019, 16: 169.
[13]
Meng Y S, Elena Arroyo-de Dompablo M. Energy Environ. Sci., 2009, 2(6): 589.
[14]
Sendek A D, Yang Q, Cubuk E D, Duerloo K A N, Cui Y, Reed E J. Energy Environ. Sci., 2017, 10(1): 306.
[15]
Yao N, Chen X, Fu Z H, Zhang Q. Chem. Rev., 2022, 122(12): 10970.
[16]
Hohenberg P, Kohn W. Phys. Rev., 1964, 136(3B): B864.
[17]
Foulkes W M C, Mitas L, Needs R J, Rajagopal G. Rev. Mod. Phys., 2001, 73(1): 33.
[18]
Geerlings P, De Proft F, Langenaeker W. Chem. Rev., 2003, 103(5): 1793.
[19]
Myers W D, Swiatecki W J. Nucl. Phys. A, 1996, 601(2): 141.
[20]
Görling A. Phys. Rev. A, 1999, 59(5): 3359.
[21]
Städele M, Moukara M, Majewski J A, Vogl P, Görling A. Phys. Rev. B, 1999, 59(15): 10031.
[22]
Islam M S, Fisher C A J. Chem. Soc. Rev., 2014, 43(1): 185.
[23]
Laasonen K. Methods in Molecular Biology. Totowa: Humana Press, 2012. 29.
[24]
Wang M Y, Xia X H, Zhong Y, Wu J B, Xu R C, Yao Z J, Wang D H, Tang W J, Wang X L, Tu J P. Chem. Eur. J., 2019, 25(15): 3710.
[25]
Ye H, Yin Y X, Xin S, Guo Y G. J. Mater. Chem. A, 2013, 1(22): 6602.
[26]
Ji X L, Lee K T, Nazar L F. Nat. Mater., 2009, 8(6): 500.
[27]
Li T T, He C, Zhang W X. J. Energy Chem., 2021, 52: 121.
[28]
Hou T Z, Chen X, Peng H J, Huang J Q, Li B Q, Zhang Q, Li B. Small, 2016, 12(24): 3283.
[29]
Wasalathilake K C, Roknuzzaman M, Ostrikov K K, Ayoko G A, Yan C. RSC Adv., 2018, 8(5): 2271.
[30]
Yi Z L, Su F Y, Huo L, Cui G Y, Zhang C L, Han P D, Dong N, Chen C M. Appl. Surf. Sci., 2020, 503: 144446.
[31]
Jand S P, Chen Y X, Kaghazchi P. J. Power Sources, 2016, 308: 166.
[32]
Yin L C, Liang J, Zhou G M, Li F, Saito R, Cheng H M. Nano Energy, 2016, 25: 203.
[33]
Hou T Z, Peng H J, Huang J Q, Zhang Q, Li B. 2D Mater., 2015, 2(1): 014011.
[34]
Li F, Su Y, Zhao J J. Phys. Chem. Chem. Phys., 2016, 18(36): 25241.
[35]
VÉlez P, Laura Para M, Luque G L, Barraco D, Leiva E P M. Electrochimica Acta, 2019, 309: 402.
[36]
Gong B J, Song X D, Shi Y T, Liu J H, Hao C. J. Phys. Chem. C, 2020, 124(6): 3644.
[37]
Sinthika S, Pushpa Selvi M, Nimma Elizabeth R, Gavali D S, Thapa R. Int. J. Energy Res., 2022, 46(4): 4405.
[38]
Yi Z L, Su F Y, Cui G Y, Han P D, Dong N, Chen C M. ChemistrySelect, 2019, 4(43): 12612.
[39]
Cheviri M, Lakshmipathi S. Chem. Phys. Lett., 2020, 739: 136942.
[40]
Zhang L, Liang P, Shu H B, Man X L, Du X Q, Chao D L, Liu Z G, Sun Y P, Wan H Z, Wang H. J. Colloid Interface Sci., 2018, 529: 426.
[41]
Liu X, Huang J Q, Zhang Q, Mai L Q. Adv. Mater., 2017, 29(20): 1601759.
[42]
Balach J, Linnemann J, Jaumann T, Giebeler L. J. Mater. Chem. A, 2018, 6(46): 23127.
[43]
Xu J, Lawson T, Fan H B, Su D W, Wang G X. Adv. Energy Mater., 2018, 8(10): 1702607.
[44]
Tao X Y, Wang J G, Liu C, Wang H T, Yao H B, Zheng G Y, Seh Z W, Cai Q X, Li W Y, Zhou G M, Zu C X, Cui Y. Nat. Commun., 2016, 7: 11203.
[45]
Zhang X F, Chen M S, Zhang Q, Liu J Q, Wu Y C. Appl. Surf. Sci., 2021, 563: 150172.
[46]
Wang L, Hu Z H, Wan X, Hua W X, Li H, Yang Q H, Wang W C. Adv. Energy Mater., 2022, 12(20): 2200340.
[47]
Liu J Q, Li K H, Zhang Q, Zhang X F, Liang X, Yan J, Tan H H, Yu Y, Wu Y C. ACS Appl. Mater. Interfaces, 2021, 13(38): 45547.
[48]
Chen X, Peng H J, Zhang R, Hou T Z, Huang J Q, Li B, Zhang Q. ACS Energy Lett., 2017, 2(4): 795.
[49]
Hou T Z, Xu W T, Chen X, Peng H J, Huang J Q, Zhang Q. Angew. Chem. Int. Ed., 2017, 56(28): 8178.
[50]
Wu Q, Chen Y C, Hao X Q, Zhu T J, Cao Y A, Wang W J. J. Electrochem. Soc., 2021, 168(12): 120516.
[51]
Wang Y S, Ma Z, Song N H, Zhang T J, Zhang Q L, Yang D P, Wang F. Chem. Phys. Lett., 2020, 741: 137121.
[52]
Jayan R, Islam M M. J. Phys. Chem. C, 2020, 124(50): 27323.
[53]
Zhang Q, Zhang X F, Li M, Liu J Q, Wu Y C. Appl. Surf. Sci., 2019, 487: 452.
[54]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37): 4248.
[55]
Pang J B, Mendes R G, Bachmatiuk A, Zhao L, Ta H Q, Gemming T, Liu H, Liu Z F, Rummeli M H. Chem. Soc. Rev., 2019, 48(1): 72.
[56]
Xiao Y, Hwang J Y, Sun Y K. J. Mater. Chem. A, 2016, 4(27): 10379.
[57]
Zhao Q, Zhu Q Z, Liu Y, Xu B. Adv. Funct. Mater., 2021, 31(21): 2100457.
[58]
Zhang C J, Cui L F, Abdolhosseinzadeh S, Heier J. InfoMat, 2020, 2(4): 613.
[59]
Fan K, Ying Y R, Luo X, Huang H T. J. Mater. Chem. A, 2021, 10(1): 337.
[60]
Liu X B, Shao X F, Li F, Zhao M W. Appl. Surf. Sci., 2018, 455: 522.
[61]
Zhang Q, Zhang X F, Xiao Y H, Li C, Tan H H, Liu J Q, Wu Y C. ACS Omega, 2020, 5(45): 29272.
[62]
Wang D S, Li F, Lian R Q, Xu J, Kan D X, Liu Y H, Chen G, Gogotsi Y, Wei Y J. ACS Nano, 2019, 13(10): 11078.
[63]
Li N, Meng Q Q, Zhu X H, Li Z, Ma J L, Huang C X, Song J, Fan J. Nanoscale, 2019, 11(17): 8485.
[64]
Song X H, Qu Y Y, Zhao L L, Zhao M W. ACS Appl. Mater. Interfaces, 2021, 13(10): 11845.
[65]
Zhang H K, Wang Z L, Cai J F, Wu S C, Li J J. ACS Appl. Mater. Interfaces, 2021, 13(45): 53388.
[66]
Zhang H K, Wang Z L, Ren J H, Liu J Y, Li J J. Energy Storage Mater., 2021, 35: 88.
[67]
He J R, Hartmann G, Lee M, Hwang G S, Chen Y F, Manthiram A. Energy Environ. Sci., 2019, 12(1): 344.
[68]
Zhang C Y, He Q, Chu W, Zhao Y. Appl. Surf. Sci., 2020, 534: 147575.
[69]
Mao X T, Yu Y, Zhu L, Fu A P. Chem. Phys., 2021, 548: 111220.
[70]
Yang D W, Liang Z F, Zhang C Q, Biendicho J J, Botifoll M, Spadaro M C, Chen Q L, Li M Y, Ramon A, Moghaddam A O, Llorca J, Wang J A, Morante J R, Arbiol J, Chou S L, Cabot A. Adv. Energy Mater., 2021, 11(36): 2101250.
[71]
Song Y C, Zhou H P, Long X, Xiao J S, Yang J, Wu N N, Chen Z, Li P Y, Chen C, Liao J X, Wu M Q. Chem. Eng. J., 2021, 418: 129388.
[72]
Nguyen T T, Balamurugan J, Go H W, Ngo Q P, Kim N H, Lee J H. Chem. Eng. J., 2022, 427: 131774.
[73]
Gao D Y, Li Y, Guo Z L, Liu Z Y, Guo K, Fang Y, Xue Y M, Huang Y, Tang C C. J. Alloys Compd., 2021, 887: 161273.
[74]
Ye Z Q, Jiang Y, Li L, Wu F, Chen R J. Nano Micro Lett., 2021, 13(1): 203.
[75]
Kong L J, Liu M, Huang H, Xu Y H, Bu X H. Adv. Energy Mater., 2022, 12(4): 2100172.
[76]
Zhang H H, Gu C, Yao M S, Kitagawa S. Adv. Energy Mater., 2022, 12(4): 2270014.
[77]
Li C, Zhang X F, Zhang Q, Xiao Y H, Fu Y Y, Tan H H, Liu J Q, Wu Y C. Comput. Theor. Chem., 2021, 1196: 113110.
[78]
Wang J R, Li F, Liu Z C, Dai Z H, Gao S X, Zhao M W. ACS Appl. Mater. Interfaces, 2021, 13(51): 61205.
[79]
Cao Y, Wang M D, Wang H J, Han C Y, Pan F S, Sun J. Adv. Energy Mater., 2022, 12(20): 2200057.
[80]
Zhan X J, Chen Z, Zhang Q C. J. Mater. Chem. A, 2017, 5(28): 14463.
[81]
Song X D, Zhang M R, Yao M, Hao C, Qiu J S. ACS Appl. Mater. Interfaces, 2018, 10(50): 43896.
[82]
Schütze Y, de Oliveira Silva R, Ning J Y, Rappich J, Lu Y, Ruiz V G, Bande A, Dzubiella J. Phys. Chem. Chem. Phys., 2021, 23(47): 26709.
[83]
Song L H, Zhang M G, Guo J. Chem. Phys. Lett., 2021, 777: 138711.
[84]
Adekoya D, Qian S S, Gu X X, Wen W, Li D S, Ma J M, Zhang S Q. Nano Micro Lett., 2021, 13(1): 13.
[85]
Hao Q, Jia G H, Wei W, Vinu A, Wang Y, Arandiyan H, Ni B J. Nano Res., 2020, 13(1): 18.
[86]
Yamsang N, Sittiwong J, Srifa P, Boekfa B, Sawangphruk M, Maihom T, Limtrakul J. Appl. Surf. Sci., 2021, 565: 150378.
[87]
Lin H, Jin R C, Wang A L, Zhu S G, Li H Z. Ceram. Int., 2019, 45(14): 17996.
[88]
Li T T, He C, Zhang W X. J. Mater. Chem. A, 2019, 7(8): 4134.
[89]
Wang Z H, Zeng Z H, Nong W, Yang Z, Qi C Z, Qiao Z P, Li Y, Wang C X. Phys. Chem. Chem. Phys., 2022, 24(1): 180.
[90]
Wang D D, Li H B, Zhang L L, Sun Z H, Han D X, Niu L, Zhao J L. Adv. Theory Simul., 2019, 2(2): 1800165.
[91]
Dong Y N, Xu B, Hu H Y, Yang J S, Li F Y, Gong J, Chen Z F. Phys. Chem. Chem. Phys., 2021, 23(23): 12958.
[92]
Liang J, Yin L C, Tang X N, Yang H C, Yan W S, Song L, Cheng H M, Li F. ACS Appl. Mater. Interfaces, 2016, 8(38): 25193.
[93]
Jiang H R, Shyy W, Liu M, Ren Y X, Zhao T S. J. Mater. Chem. A, 2018, 6(5): 2107.
[94]
Singh D, Gupta S K, Hussain T, Sonvane Y, Gajjar P N, Ahuja R. Energy Fuels, 2021, 35(10): 9001.
[95]
Zhang Q, Xiao Y H, Fu Y Y, Li C, Zhang X F, Yan J, Liu J Q, Wu Y C. Appl. Surf. Sci., 2020, 512: 145639.
[96]
Zhao E Y, Nie K H, Yu X Q, Hu Y S, Wang F W, Xiao J, Li H, Huang X J. Adv. Funct. Mater., 2018, 28(38): 1707543.
[97]
Tan J, Liu D N, Xu X, Mai L Q. Nanoscale, 2017, 9(48): 19001.
[98]
Pascal T A, Wujcik K H, Velasco-Velez J, Wu C H, Teran A A, Kapilashrami M, Cabana J, Guo J H, Salmeron M, Balsara N, Prendergast D. J. Phys. Chem. Lett., 2014, 5(9): 1547.
[99]
Do-Hoon Kim B S, Lee M S B, Park K Y, Kang K. Chem. Asian J., 2016, 11(8): 1288.
[100]
Liu Z X, Deng H Q, Hu W Y, Gao F, Zhang S G, Balbuena P B, Mukherjee P P. Phys. Chem. Chem. Phys., 2018, 20(17): 11713.
[101]
Feng Z M, Kim C, Vijh A, Armand M, Bevan K H, Zaghib K. J. Power Sources, 2014, 272: 518.
[102]
Park H, Koh H S, Siegel D J. J. Phys. Chem. C, 2015, 119(9): 4675.
[103]
Yang G C, Shi S Q, Yang J H, Ma Y M. J. Mater. Chem. A, 2015, 3(16): 8865.
[104]
Paolella A, Zhu W, Marceau H, Kim C S, Feng Z M, Liu D Q, Gagnon C, Trottier J, Abdelbast G, Hovington P, Vijh A, Demopoulos G P, Armand M, Zaghib K. J. Power Sources, 2016, 325: 641.
[105]
Song Y W, Shen L, Yao N, Li X Y, Bi C X, Li Z, Zhou M Y, Zhang X Q, Chen X, Li B Q, Huang J Q, Zhang Q. Chem, 2022, 8(11): 3031.
[106]
Liu Q, Mu D B, Wu B R, Wang L, Gai L, Wu F. RSC Adv., 2017, 7(53): 33373.
[107]
Wang L J, Zhang T R, Yang S Q, Cheng F Y, Liang J, Chen J. J. Energy Chem., 2013, 22(1): 72.
[108]
Assary R S, Curtiss L A, Moore J S. J. Phys. Chem. C, 2014, 118(22): 11545.
[109]
Arneson C, Wawrzyniakowski Z D, Postlewaite J T, Ma Y. J. Phys. Chem. C, 2018, 122(16): 8769.
[110]
Li C, Zhang Q, Sheng J Z, Chen B, Gao R H, Piao Z H, Zhong X W, Han Z Y, Zhu Y F, Wang J L, Zhou G M, Cheng H M. Energy Environ. Sci., 2022, 15(10): 4289.
[111]
Liu J Q, Li M, Zhang X F, Zhang Q, Yan J, Wu Y C. Phys. Chem. Chem. Phys., 2019, 21(30): 16435.
[112]
Feng S, Fu Z H, Chen X, Li B Q, Peng H J, Yao N, Shen X, Yu L G, Gao Y C, Zhang R, Zhang Q. Angew. Chem. Int. Ed., 2022, 61(52): e202211448.
[113]
Cheviri M, Lakshmipathi S. Comput. Theor. Chem., 2021, 1202: 113323.
[114]
Velasco J J, VÉlez P, Zoloff Michoff M E, Visintín A, Versaci D, Bodoardo S, Luque G L, Leiva E P M. J. Phys.: Condens. Matter, 2021, 33(34): 344003.
[115]
Zhang C Y, Zhang C Q, Sun G W, Pan J L, Gong L, Sun G Z, Biendicho J J, Balcells L, Fan X L, Morante J R, Zhou J Y, Cabot A. Angew. Chem. Int. Ed., 2022, 61(49): e202211570.
[116]
Sun G W, Jin M J, Liu Q Y, Zhang C Y, Pan J L, Wang Y C, Gao X P, Sun G Z, Pan X J, Zhou J Y. Chem. Eng J, 2023, 453: 139752.
[117]
Lin Y X, Zheng J, Wang C S, Qi Y. Nano Energy, 2020, 75: 104915.
[118]
Kaiser M R, Chou S L, Liu H K, Dou S X, Wang C S, Wang J Z. Adv. Mater., 2017, 29(48): 1700449.
[119]
Chen X, Hou T Z, Li B, Yan C, Zhu L, Guan C, Cheng X B, Peng H J, Huang J Q, Zhang Q. Energy Storage Mater., 2017, 8: 194.
[120]
Kamphaus E P, Balbuena P B. J. Power Sources, 2021, 485: 229289.
[121]
Camacho-Forero L E, Balbuena P B. J. Power Sources, 2020, 472: 228449.
[122]
Han J, Balbuena P B. Phys. Chem. Chem. Phys., 2018, 20(27): 18811.
[123]
Krauskopf T, Richter F H, Zeier W G, Janek J. Chem. Rev., 2020, 120(15): 7745.
[124]
Phuc N H H, Hikima K, Muto H, Matsuda A. Crit. Rev. Solid State Mater. Sci., 2022, 47(3): 283.
[125]
Umeshbabu E, Zheng B Z, Yang Y. Electrochem. Energy Rev., 2019, 2(2): 199.
[126]
Xu G Y, Kushima A, Yuan J R, Dou H, Xue W J, Zhang X G, Yan X H, Li J. Energy Environ. Sci., 2017, 10(12): 2544.
[127]
Shi X M, Zeng Z C, Sun M Z, Huang B L, Zhang H T, Luo W, Huang Y H, Du Y P, Yan C H. Nano Lett., 2021, 21(21): 9325.
[128]
Sun C G, Wang Z X, Yin L C, Xu S J, Ali Ghazi Z, Shi Y, An B G, Sun Z H, Cheng H M, Li F. Nano Energy, 2020, 75: 104976.
[129]
Zhao Q S, Xue H T, Tang F L, Wei C D. Solid State Ion., 2021, 373: 115797.
[130]
Wei C D, Xue H T, Li Z, Zhao F N, Tang F L. J. Phys. D: Appl. Phys., 2022, 55(10): 105305.
[131]
Luo C, Liang X, Sun Y F, Lv W, Sun Y W, Lu Z Y, Hua W X, Yang H T, Wang R C, Yan C L, Li J, Wan Y, Yang Q H. Energy Storage Mater., 2020, 33: 290.
[132]
Wu F, Qian J, Chen R J, Lu J, Li L, Wu H M, Chen J Z, Zhao T, Ye Y S, Amine K. ACS Appl. Mater. Interfaces, 2014, 6(17): 15542.
[133]
Ebadi M, Lacey M J, Brandell D, Araujo C M. J. Phys. Chem. C, 2017, 121(42): 23324.
[134]
Wang H, Zhang L F, Han J Q, Weinan E. Comput. Phys. Commun., 2018, 228: 178.
[135]
Lu D H, Wang H, Chen M H, Lin L, Car R, Weinan E, Jia W L, Zhang L F. Comput. Phys. Commun., 2021, 259: 107624.
[136]
Liu X Y, Peng H J, Li B Q, Chen X, Li Z, Huang J Q, Zhang Q. Angewandte Chemie Int. Ed., 2022, 61(48): e202214037.
[137]
Chen X, Liu X Y, Shen X, Zhang Q. Angew. Chem. Int. Ed., 2021, 60(46): 24354.

Funding

National Natural Science Foundation of China(51972093)
National Natural Science Foundation of China(U1810204)
National Natural Science Foundation of China(U1910210)
Nature Science Foundation of Anhui Province(2008085ME129)
Key Research and Development Plan of Anhui Province(202004b11020024)
Fundamental Research Funds for the Central Universities of China(PA2021GDSK0087)
PDF(18631 KB)

Accesses

Citation

Detail

Sections
Recommended

/