Chemical Synthesis of Peptides and Proteins

Xinyue Wang, Kang Jin

Prog Chem ›› 2023, Vol. 35 ›› Issue (4) : 526-542.

PDF(9391 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(9391 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (4) : 526-542. DOI: 10.7536/PC220930
Review

Chemical Synthesis of Peptides and Proteins

Author information +
History +

Abstract

As the material basis of active substances and life activities in living organisms, peptides and proteins play vital roles in basic physiological processes such as signal transmission, energy utilization, immune response, etc. And they are closely related to the occurrence of a variety of diseases. An important prerequisite for studying their structure and biological function and developing related drugs is to obtain a certain number of high pure peptides and proteins. The sources of natural peptides and proteins mainly include tissues and organs of animals and plants, secondary metabolites of microorganisms, etc. Natural extraction, recombinant technology, and chemical synthesis are the main methods to obtain peptides and proteins. Chemical synthesis can conveniently introduce unnatural amino acids or specific types of post-translational modification groups at any site of peptides and proteins compared with the former two, such as glycosylation, phosphorylation, fluorophores, and photorelinking reaction groups, which has greatly promoted the application and development of peptides and proteins in the field of medicine research. This review comprehensively introduces the various chemical synthesis strategies of peptides and proteins, along with the basic principles, advantages and disadvantages, and application values, aiming to provide a novel sight for synthesizing peptides and proteins.

Key words

peptide synthesis / difficult peptides / protein synthesis / chemical strategies

Cite this article

Download Citations
Xinyue Wang , Kang Jin. Chemical Synthesis of Peptides and Proteins[J]. Progress in Chemistry. 2023, 35(4): 526-542 https://doi.org/10.7536/PC220930

References

[1]
Fischer E, Fourneau E. Ber. Dtsch. Chem. Ges., 1901, 34(2): 2868.
[2]
Curtius T. J. Prakt. Chem., 1904, 70(1): 57.
[3]
Fischer E. Ber. Dtsch. Chem. Ges., 1905, 38(1): 605.
[4]
Vigneaud V D, Ressler C, Swan C J M, Roberts C W, Katsoyannis P G, Gordon S. J. Am. Chem. Soc., 1953, 75(19): 4879.
[5]
Schwyzer R, Sieber P. Nature, 1963, 199(4889): 172.
[6]
Merrifield B. Science, 1986, 232(4748): 341.
[7]
Merrifield R B. J. Am. Chem. Soc., 1963, 85(14): 2149.
[8]
Gong Y T, Du Y C, Huang W D, Chen C Q, Ge L J, Hu S Q, Jiang R Q, Zhu S Q, Niu J Y, Xu J C, Zhang W J, Chen L L, Li H X, Wang Y, Lu D P, Ji A X, Li C X, Shi F T, Ye Y H, Tang K L, Xing Q Y. Chin. Sci. Bull., 1965, 11: 941.
龚岳亭, 杜雨苍, 黄惟德, 陈常庆, 葛麟俊, 胡世全, 蒋荣庆, 朱尚权, 钮经义, 徐杰诚, 张伟君, 陈玲玲, 李鸿绪, 汪猷, 陆德培, 季爱雪, 李崇熙, 施溥涛, 叶蕴华, 汤卡罗, 邢其毅. 科学通报, 1965, 11: 941.).
[9]
Hattori K, Koike K, Okuda K, Hirayama T, Ebihara M, Takenaka M, Nagasawa H. Org. Biomol. Chem., 2016, 14(6): 2090.
[10]
Zhang T, Song W, Zhao J, Liu J. Ind. Eng. Chem. Res., 2017, 56: 11697.
[11]
Fuse S, Koinuma H, Kimbara A, Izumikawa M, Mifune Y, He H Y, Shin-ya K, Takahashi T, Doi T, J. Am. Chem. Soc., 2014, 136(34): 12011.
[12]
Zhao Z G, Mousa R, Metanis N. Chem. A Eur. J., 2022, 28(16): e202200279.
[13]
Grygiel T L R, Teplyakov A, Obmolova G, Stowell N, Holland R, Nemeth J F, Pomerantz S C, Kruszynski M, Gilliland G L. Biopolymers, 2010, 94(3): 350.
[14]
Chang C D, Meienhofer J. Int. J. Pept. Protein Res., 1978, 11(3): 246.
[15]
SCHNölzer M, Alewood P, Jones A, Alewood D, Kent S B H. Int. J. Pept. Protein Res., 1992, 40(3/4): 180.
[16]
Yamamoto N, Tanabe Y, Okamoto R, Dawson P E, Kajihara Y. J. Am. Chem. Soc., 2008, 130(2): 501.
[17]
Behrendt R, White P, Offer J. J. Pept. Sci., 2016, 22(1): 4.
[18]
Kulkarni S S, Watson E E, Premdjee B, Conde-Frieboes K W, Payne R J. Nat. Protoc., 2019, 14(7): 2229.
[19]
Tang S, Zuo C, Huang D L, Cai X Y, Zhang L H, Tian C L, Zheng J S, Liu L. Nat. Protoc., 2017, 12(12): 2554.
[20]
Zheng J S, Tang S, Qi Y K, Wang Z P, Liu L. Nat. Protoc., 2013, 8(12): 2483.
[21]
Wang S S. J. Am. Chem. Soc., 1973, 95(4): 1328.
[22]
Chatzi K B O, Gatos D, Stavropoulos G. Int. J. Pept. Protein Res., 1991, 37(6): 513.
[23]
Tan X L, Pan M, Zheng Y, Gao S, Liang L J, Li Y M. Chem. Sci., 2017, 8(10): 6881.
[24]
Carbajo D, El-Faham A, Royo M, Albericio F. ACS Omega, 2019, 4(5): 8674.
[25]
Acosta G A, Royo M, de la Torre B G, Albericio F. Tetrahedron Lett., 2017, 58(28): 2788.
[26]
Rink H. Tetrahedron Lett., 1987, 28(33): 3787.
[27]
García-Martín F, Quintanar-Audelo M, García-Ramos Y, Cruz L J, Gravel C, Furic R, CôtÉ S, Tulla-Puche J, Albericio F. J. Comb. Chem., 2006, 8(2): 213.
[28]
Sheehan J C, Hess G P. J. Am. Chem. Soc., 1955, 77(4): 1067.
[29]
Leo Benoiton N, Chen F M F. J. Chem. Soc., Chem. Commun., 1981(11): 543.
[30]
Sheehan J, Cruickshank P, Boshart G. J. Org. Chem., 1961, 26(7): 2525.
[31]
SubirÃ3s-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F. Chem. Eur. J., 2009, 15(37): 9394.
[32]
Coste J, Le-Nguyen D, Castro B. Tetrahedron Lett., 1990, 31(2): 205.
[33]
Albericio F, Cases M, Alsina J, Triolo S A, Carpino L A, Kates S A. Tetrahedron Lett., 1997, 38(27): 4853.
[34]
SubirÓs-Funosas R, El-Faham A, Albericio F. Org. Biomol. Chem., 2010, 8(16): 3665.
[35]
Carpino L A, Imazumi H, El-Faham A, Ferrer F J, Zhang C W, Lee Y, Foxman B M, Henklein P, Hanay C, Mügge C, Wenschuh H, Klose J, Beyermann M, Bienert M. Angewandte Chemie Int. Ed., 2002, 41(3): 441.
[36]
Ehrlich A, Rothemund S, Brudel M, Beyermann M, Carpino L A, Bienert M. Tetrahedron Lett., 1993, 34(30): 4781.
[37]
El-Faham A, Funosas R S, Prohens R, Albericio F. Chem. Eur. J., 2009, 15(37): 9404.
[38]
Gutte B, Merrifield R B. J. Biol. Chem., 1971, 246(6): 1922.
[39]
Kent S B H. Annu. Rev. Biochem., 1988, 57: 957.
[40]
Bedford J, Hyde C, Johnson T, Jun W, Owen D, Quibell M, Sheppard R C. Int. J. Pept. Protein Res., 1992, 40(3/4): 300.
[41]
Paradís-Bas M, Tulla-Puche J, Albericio F. Chem. Soc. Rev., 2016, 45(3): 631.
[42]
Wöhr T, Wahl F, Nefzi A, Rohwedder B, Sato T, Sun X C, Mutter M. J. Am. Chem. Soc., 1996, 118(39): 9218.
[43]
Coïc Y M, Le Lan C, Neumann J M, Jamin N, Baleux F. J. Peptide Sci., 2010, 16(2): 98.
[44]
Noden M, Moreira R, Huang E, Yousef A, Palmer M, Taylor S D. J. Org. Chem., 2019, 84(9): 5339.
[45]
Abedini A, Raleigh D P. Org. Lett., 2005, 7(4): 693.
[46]
Jolliffe K A. Aust. J. Chem., 2018, 71(10): 723.
[47]
Liu Y, Zhao X Y, Wang H B, Liu H L, Sui Z Y, Yan B F, Du Y G. J. Org. Chem., 2021, 86(1): 1065.
[48]
Wang P, Aussedat B, Vohra Y, Danishefsky S J. Angew. Chem. Int. Ed., 2012, 51(46): 11571.
[49]
Zeng C, Sun B, Cao X F, Zhu H L, Oluwadahunsi O M, Liu D, Zhu H, Zhang J B, Zhang Q, Zhang G L, Gibbons C A, Liu Y P, Zhou J, Wang P G. Org. Lett., 2020, 22(21): 8349.
[50]
Johnson T, Quibell M, Owen D, Sheppard R C. J. Chem. Soc., Chem. Commun., 1993(4): 369.
[51]
Li T L, Liu H, Li X C. Org. Lett., 2016, 18(22): 5944.
[52]
Huang Y C, Guan C J, Tan X L, Chen C C, Guo Q X, Li Y M. Org. Biomol. Chem., 2015, 13(5): 1500.
[53]
Abdel-Aal A B M, Papageorgiou G, Raz R, Quibell M, Burlina F, Offer J. J. Pept. Sci., 2016, 22(5): 360.
[54]
Sohma Y, Sasaki M, Hayashi Y, Kimura T, Kiso Y. Chemical Communications, 2004, 124.
[55]
Sohma Y, Taniguchi A, Skwarczynski M, Yoshiya T, Fukao F, Kimura T, Hayashi Y, Kiso Y. Tetrahedron Lett., 2006, 47(18): 3013.
[56]
Youhei S. Biopolymers, 2007, 88: 253.
[57]
Taniguchi A, Skwarczynski M, Sohma Y, Okada T, Ikeda K, Prakash H, Mukai H, Hayashi Y, Kimura T, Hirota S, Matsuzaki K, Kiso Y. ChemBioChem, 2008, 9(18): 3055.
[58]
Hojo H, Takei T, Asahina Y, Okumura N, Takao T, So M, Suetake I, Sato T, Kawamoto A, Hirabayashi Y. Angew. Chem. Int. Ed., 2021, 60(25): 13900.
[59]
Lu Y A, Felix A M. Int. J. Pept. Protein Res., 1994, 43(2): 127.
[60]
Yang B, Gelfanov V M, Perez-Tilve D, DuBois B, Rohlfs R, Levy J, Douros J D, Finan B, Mayer J P, DiMarchi R D. J. Med. Chem., 2021, 64(8): 4697.
[61]
Wang C, Xiong M R, Yang C, Yang D, Zheng J J, Fan Y, Wang S, Gai Y K, Lan X L, Chen H, Zheng L, Huang K. J. Med. Chem., 2020, 63(24): 16028.
[62]
Jing X S, Jin K. Med. Res. Rev., 2020, 40(2): 753.
[63]
Dunetz J R, Xiang Y Q, Baldwin A, Ringling J. Org. Lett., 2011, 13(19): 5048.
[64]
Ollivier N, Toupy T, Hartkoorn R C, Desmet R, Monbaliu J C M, Melnyk O. Nat. Commun., 2018, 9: 2847.
[65]
Wong C T T, Lam H Y, Li X C. Tetrahedron, 2014, 70(42): 7770.
[66]
Chow H Y, Zhang Y, Matheson E, Li X C. Chem. Rev., 2019, 119(17): 9971.
[67]
Gless B H, Olsen C A. J. Org. Chem., 2018, 83(17): 10525.
[68]
Payne R J, Wong C H. Chem. Commun., 2010, 46(1): 21.
[69]
Ma W J, Deng Y Q, Xu Z J, Liu X B, Chapla D G, Moremen K W, Wen L Q, Li T H. J. Am. Chem. Soc., 2022, 144(20): 9057.
[70]
Dawson P E, Muir T W, Clark-Lewis I, Kent S B H. Science, 1994, 266(5186): 776.
[71]
Nakamura T, Shigenaga A, Sato K, Tsuda Y, Sakamoto K, Otaka A. Chem. Commun., 2014, 50(1): 58.
[72]
Fang G M, Li Y M, Shen F, Huang Y C, Li J B, Lin Y, Cui H K, Liu L. Angew. Chem. Int. Ed., 2011, 50(33): 7645.
[73]
Tian X B, Li J, Huang W. Tetrahedron Lett., 2016, 57(38): 4264.
[74]
Flood D T, Hintzen J C J, Bird M J, Cistrone P A, Chen J S, Dawson P E. Angew. Chem. Int. Ed., 2018, 57(36): 11634.
[75]
Terrier V P, Adihou H, Arnould M, Delmas A F, Aucagne V. Chem. Sci., 2016, 7(1): 339.
[76]
Lelièvre D, Terrier V P, Delmas A F, Aucagne V. Org. Lett., 2016, 18(5): 920.
[77]
Yan L Z, Dawson P E. J. Am. Chem. Soc., 2001, 123(4): 526.
[78]
Wan Q, Danishefsky S. Angew. Chem. Int. Ed., 2007, 46(48): 9248.
[79]
Pasunooti K K, Yang R L, Banerjee B, Yap T, Liu C F. Org. Lett., 2016, 18(11): 2696.
[80]
Wang S Y, Zhou Q Q, Li Y X, Wei B C, Liu X L, Zhao J, Ye F R, Zhou Z N, Ding B, Wang P. J. Am. Chem. Soc., 2022, 144(3): 1232.
[81]
Loibl S F, Harpaz Z, Seitz O. Angew. Chem. Int. Ed., 2015, 54(50): 15055.
[82]
Dao Y K, Han L, Wang H X, Dong S W. Org. Lett., 2019, 21(9): 3265.
[83]
Ding H, Shigenaga A, Sato K, Morishita K, Otaka A. Org. Lett., 2011, 13(20): 5588.
[84]
Yin H L, Zheng M J, Chen H, Wang S Y, Zhou Q Q, Zhang Q, Wang P. J. Am. Chem. Soc., 2020, 142(33): 14201.
[85]
Liczner C, Hanna C C, Payne R J, Wilds C J. Chem. Sci., 2022, 13(2): 410.
[86]
Zhang Y F, Xu C, Lam H Y, Lee C L, Li X C. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(17): 6657.
[87]
Wong C T T, Li T, Lam H Y, Zhang Y, Li X. Front. Chem., 2014, 2: 1.
[88]
Chen D L, Laam Po K H, Blasco P, Chen S, Li X C. Org. Lett., 2020, 22(12): 4749.
[89]
Wei T Y, Liu H, Chu B Z, Blasco P, Liu Z, Tian R J, Li D X, Li X C. Cell Chem. Biol., 2021, 28(5): 722.
[90]
Liu J M, Wei T Y, Tan Y, Liu H, Li X C. Chem. Sci., 2022, 13(5): 1367.
[91]
Lee C L, Liu H, Wong C T T, Chow H Y, Li X C. J. Am. Chem. Soc., 2016, 138(33): 10477.
[92]
Newberry R W, Raines R T. Acc. Chem. Res., 2017, 50(8): 1838.
[93]
Tan Y, Li J S, Jin K, Liu J M, Chen Z Y, Yang J, Li X C. Angew. Chem. Int. Ed., 2020, 59(31): 12741.
[94]
Bode J W, Fox R M, Baucom K D. Angew. Chem. Int. Ed., 2006, 45(8): 1248.
[95]
Pusterla I, Bode J W. Angew. Chem. Int. Ed., 2012, 51(2): 513.
[96]
Baldauf S, Ogunkoya A O, Boross G N, Bode J W. J. Org. Chem., 2020, 85(3): 1352.
[97]
Kumarswamyreddy N, Reddy D N, Robkis D M, Kamiya N, Tsukamoto R, Kanaoka M M, Higashiyama T, Oishi S, Bode J W. RSC Chem. Biol., 2022, 3(6): 721.
[98]
Murar C E, Ninomiya M, Shimura S, Karakus U, Boyman O, Bode J W. Angew. Chem. Int. Ed., 2020, 59(22): 8425.
[99]
Rohrbacher F, Wucherpfennig T G, Bode J W. Top. Curr. Chem., 2014: 1.
[100]
Wallin E, Von Heijne G. Protein Sci., 1998, 7(4): 1029.
[101]
Wang L, Zhang J G, Wang D L, Song C. PLoS Comput. Biol., 2022, 18(3): e1009972.
[102]
Paradís-Bas M, Albert-Soriano M, Tulla-Puche J, Albericio F. Org. Biomol. Chem., 2014, 12(37): 7194.
[103]
Zheng J S, He Y, Zuo C, Cai X Y, Tang S, Wang Z A, Zhang L H, Tian C L, Liu L. J. Am. Chem. Soc., 2016, 138(10): 3553.
[104]
Chen Z, Cole P A. Curr. Opin. Chem. Biol., 2015, 28: 115.
[105]
Agouridas V, El Mahdi O, Melnyk O. J. Med. Chem., 2020, 63(24): 15140.
[106]
Qiao Y C, Yu G, Kratch K C, Wang X A, Wang W W, Leeuwon S Z, Xu S Q, Morse J S, Liu W R. J. Am. Chem. Soc., 2020, 142(15): 7047.
[107]
Henager S H, Chu N, Chen Z, Bolduc D, Dempsey D R, Hwang Y, Wells J, Cole P A. Nat. Methods, 2016, 13(11): 925.
[108]
Jia X Y, Kwon S, Wang C I A, Huang Y H, Chan L Y, Tan C C, Rosengren K J, Mulvenna J P, Schroeder C I, Craik D J. J. Biol. Chem., 2014, 289(10): 6627.
[109]
Thompson R E, Muir T W. Chem. Rev., 2020, 120(6): 3051.
[110]
Siman P, Brik A. Org. Biomol. Chem., 2012, 10(30): 5684.
[111]
Li F X, Zhang Q Z, Li S J, Lin G, Huo X Y, Lan Y, Yang Z. Org. Lett., 2021, 23(9): 3421.
[112]
Ye F R, Zhao J, Xu P, Liu X L, Yu J, Shangguan W, Liu J Z, Luo X S, Li C, Ying T L, Wang J, Yu B, Wang P. Angew. Chem. Int. Ed., 2021, 60(23): 12610.
[113]
Zhao J, Liu J Z, Liu X N, Cao Q, Zhao H B, Liu L Z, Ye F R, Wang C, Shao H, Xue D X, Tao H C, Li B, Yu B, Wang P. Chin. J. Chem., 2022, 40(7): 787.
[114]
Adamo A, Beingessner R L, Behnam M, Chen J, Jamison T F, Jensen K F, Monbaliu J C M, Myerson A S, Revalor E M, Snead D R, Stelzer T, Weeranoppanant N, Wong S Y, Zhang P. Science, 2016, 352(6281): 61.

Funding

Taishan Scholar Program in Shandong Province, the National Natural Science Foundation of China(22007059)
Shandong Provincial Key Research and Development Program (Major Technological Innovation Project)(2021CXGC010501)
PDF(9391 KB)

Accesses

Citation

Detail

Sections
Recommended

/