Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries

Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu

Prog Chem ›› 2023, Vol. 35 ›› Issue (4) : 620-642.

PDF(4951 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4951 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (4) : 620-642. DOI: 10.7536/PC220935
Review

Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries

Author information +
History +

Abstract

Lithium-ion batteries are widely used in mobile electronic products, electric vehicles, energy storage systems, aerospace and other fields due to their high energy and power density, long life and no memory effect. However, in recent years, the frequent safety accidents of electric vehicles and energy storage systems related to battery thermal runaway have attracted high attention. The high safety of high energy density batteries is the primary guarantee to promote the large-scale application of batteries, and the research on the characteristics of battery heat generation, thermal runaway mechanism, protection and suppression methods has become a hot topic in the field of battery thermal safety research in recent years. Therefore, the core issues in the field of battery thermal safety are comprehensively reviewed in this paper. Firstly, the thermal generation characteristics of the battery under normal conditions, the thermal runaway chain exothermic reaction and the failure mechanism of the battery under three kinds of abuse conditions are discussed; Secondly, the mechanistic equation, construction, application and evolution of the electrochemical-thermal coupling model and thermal runaway model are described; and then, the research progress of anode and cathode materials, separator, electrolyte and current collector safety modification technology are introduced; finally, this paper makes a prospect for the research trend in this field to provide ideas and directions for improving the intrinsic safety of lithium-ion batteries and preventing thermal runaway.

Key words

thermal stability / thermal runaway / failure mechanism / mechanism model / modification technology

Cite this article

Download Citations
Shuyang Yu , Wenlei Luo , Jingying Xie , et al . Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries[J]. Progress in Chemistry. 2023, 35(4): 620-642 https://doi.org/10.7536/PC220935

References

[1]
Wang Q S, Mao B B, Stoliarov S I, Sun J H. Prog. Energy Combust. Sci., 2019, 73: 95.
[2]
Shan X Y, Li F, Wang D W, Cheng H M. Energy Storage Mater., 2016, 3: 66.
[3]
Feng X N, Ouyang M G, Liu X, Lu L G, Xia Y, He X M. Energy Storage Mater., 2018, 10: 246.
[4]
Goodenough J B, Kim Y. Chem. Mater., 2010, 22(3): 587.
[5]
Wang Q S, Ping P, Zhao X J, Chu G Q, Sun J H, Chen C H. J. Power Sources, 2012, 208: 210.
[6]
Spotnitz R, Franklin J. J. Power Sources, 2003, 113(1): 81.
[7]
Bernardi D, Pawlikowski E, Newman J. J. Electrochem. Soc., 1985, 132(1): 5.
[8]
Rao L, Newman J. J. Electrochem. Soc., 1997, 144(8): 2697.
[9]
Kim U S, Kwon K H, Shin C B, Kang T H, Kim C S. Meet. Abstr., 2006, MA2005-01(3): 178.
[10]
Kim U S, Shin C B, Kim C S. J. Power Sources, 2008, 180(2): 909.
[11]
Mao Y, Guo R, Sheng L M, Ma S D, Zhou L Z, Yan L Q, Yang C, Xie J Y. J. Electrochem. Soc., 2021, 168(6): 060553.
[12]
Liu S B, Zhang H Y, Xu X B. J. Energy Storage, 2021, 36: 102446.
[13]
Wang Q S, Jiang L H, Yu Y, Sun J H. Nano Energy, 2019, 55: 93.
[14]
Feng X N, Zheng S Q, Ren D S, He X M, Wang L, Liu X, Li M G, Ouyang M G. Energy Procedia, 2019, 158: 4684.
[15]
Zhao L W, Watanabe I, Doi T, Okada S, Yamaki J I, J. Power Sources, 2006, 161(2): 1275.
[16]
Richard M N, Dahn J R. J. Electrochem. Soc., 1999, 146(6): 2068.
[17]
Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A, Granot E. J. Power Sources, 1997, 68(1): 91.
[18]
Andersson A M, Herstedt M, Bishop A G, Edström K. Electrochimica Acta, 2002, 47(12): 1885.
[19]
Zhang L P, Li X L, Yang M R, Chen W H. Energy Storage Mater., 2021, 41: 522.
[20]
Mao B B, Chen H D, Cui Z X, Wu T Q, Wang Q S. Int. J. Heat Mass Transf., 2018, 122: 1103.
[21]
Feng X N, He X M, Ouyang M, Lu L G, Wu P, Kulp C, Prasser S. Appl. Energy, 2015, 154: 74.
[22]
Jiang J, Dahn J R. Electrochem. Commun., 2004, 6(1): 39.
[23]
Biensan P, Simon B, Peres J P. J. Power Sources, 1999, 81/82: 906.
[24]
Ping P, Kong D P, Zhang J Q, Wen R X, Wen J. J. Power Sources, 2018, 398: 55.
[25]
Wang Y D, Jiang J W, Dahn J R. Electrochem. Commun., 2007, 9(10): 2534.
[26]
Huang Y Q, Lin Y C, Jenkins D M, Chernova N A, Chung Y, Radhakrishnan B, Chu I H, Fang J, Wang Q, Omenya F, Ong S P, Stanley Whittingham M. ACS Appl. Mater. Interfaces, 2016, 8(11): 7013.
[27]
Noh H J, Youn S, Yoon C S, Sun Y K. J. Power Sources, 2013, 233: 121.
[28]
Dahbi M, Saadoune I, Gustafsson T, Edström K. Solid State Ion., 2011, 203(1): 37.
[29]
Cho Y H, Jang D, Yoon J, Kim H, Ahn T K, Nam K W, Sung Y E, Kim W S, Lee Y S, Yang X Q, Yoon W S. J. Alloys Compd., 2013, 562: 219.
[30]
Nam K W, Yoon W S, Yang X Q. J. Power Sources, 2009, 189(1): 515.
[31]
Röder P, Baba N, Wiemhöfer H D. J. Power Sources, 2014, 248: 978.
[32]
Johannes M D, Swider-Lyons K, Love C T. Solid State Ion., 2016, 286: 83.
[33]
Zhang Z, Fouchard D, Rea J R. J. Power Sources, 1998, 70(1): 16.
[34]
Wang Q S, Sun J H, Chen C H. J. Electrochem. Soc., 2007, 154(4): A263.
[35]
Li S Q, Meng X Y, Yi Q, Alonso J A, Fernandez-Diaz M T, Sun C W, Wang Z L. Nano Energy, 2018, 52: 510.
[36]
Zaghib K, Dube J, Dallaire A, Galoustov K, Guerfi A, Ramanathan M, Benmayza A, Prakash J, Mauger A, Julien C M. J. Power Sources, 2012, 219: 36.
[37]
Röder P, Baba N, Friedrich K A, Wiemhöfer H D. J. Power Sources, 2013, 236: 151.
[38]
Golubkov A W, Fuchs D, Wagner J, Wiltsche H, Stangl C, Fauler G, Voitic G, Thaler A, Hacker V. RSC Adv., 2014, 4(7): 3633.
[39]
Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997, 144(4): 1188.
[40]
Ping P, Wang Q S, Huang P F, Li K, Sun J H, Kong D P, Chen C H. J. Power Sources, 2015, 285: 80.
[41]
Feng X N, Zheng S Q, Ren D S, He X M, Wang L, Cui H, Liu X, Jin C Y, Zhang F S, Xu C S, Hsu H, Gao S, Chen T Y, Li Y L, Wang T Z, Wang H, Li M G, Ouyang M. Appl. Energy, 2019, 246: 53.
[42]
Feng X N, Ren D S, He X M, Ouyang M G. Joule, 2020, 4(4): 743.
[43]
Xu C S, Feng X N, Huang W S, Duan Y K, Chen T Y, Gao S, Lu L G, Jiang F C, Ouyang M G. J. Energy Storage, 2020, 31: 101670.
[44]
Feng X N, Fang M, He X M, Ouyang M G, Lu L G, Wang H, Zhang M X. J. Power Sources, 2014, 255: 294.
[45]
Wang H B, Du Z M, Rui X Y, Wang S Y, Jin C Y, He L, Zhang F S, Wang Q Z, Feng X N. J. Hazard. Mater., 2020, 393: 122361.
[46]
Liu X, Ren D S, Hsu H, Feng X N, Xu G L, Zhuang M H, Gao H, Lu L G, Han X B, Chu Z Y, Li J Q, He X M, Amine K, Ouyang M. Joule, 2018, 2(10): 2047.
[47]
Bak S M, Hu E Y, Zhou Y N, Yu X Q, Senanayake S D, Cho S J, Kim K B, Chung K Y, Yang X Q, Nam K W. ACS Appl. Mater. Interfaces, 2014, 6(24): 22594.
[48]
Li Y, Liu X, Wang L, Feng X N, Ren D S, Wu Y, Xu G L, Lu L G, Hou J X, Zhang W F, Wang Y L, Xu W Q, Ren Y, Wang Z F, Huang J Y, Meng X F, Han X B, Wang H W, He X M, Chen Z H, Amine K, Ouyang M. Nano Energy, 2021, 85: 105878.
[49]
Hou J X, Feng X N, Wang L, Liu X, Ohma A, Lu L G, Ren D S, Huang W S, Li Y, Yi M C, Wang Y, Ren J Q, Meng Z H, Chu Z Y, Xu G L, Amine K, He X M, Wang H W, Nitta Y, Ouyang M. Energy Storage Mater., 2021, 39: 395.
[50]
Wu Y, Ren D S, Liu X, Xu G L, Feng X N, Zheng Y J, Li Y L, Yang M, Peng Y, Han X B, Wang L, Chen Z H, Ren Y, Lu L G, He X M, Chen J T, Amine K, Ouyang M G. Adv. Energy Mater., 2021, 11: 1.
[51]
Ren D S, Feng X N, Liu L S, Hsu H, Lu L G, Wang L, He X M, Ouyang M. Energy Storage Mater., 2021, 34: 563.
[52]
Zheng Y J, Shi Z H, Ren D S, Chen J, Liu X, Feng X N, Wang L, Han X B, Lu L G, He X M, Ouyang M G. J. Energy Chem., 2022, 69: 593.
[53]
Zhong G B, Mao B B, Wang C, Jiang L, Xu K Q, Sun J H, Wang Q S. J. Therm. Anal. Calorim., 2019, 135(5): 2879.
[54]
Mao B B, Huang P F, Chen H D, Wang Q S, Sun J H. Int. J. Heat Mass Transf., 2020, 149: 119178.
[55]
Huang P F, Yao C X, Mao B B, Wang Q S, Sun J H, Bai Z H. Energy, 2020, 213: 119082.
[56]
Huang L, Xu G J, Du X F, Li J D, Xie B, Liu H S, Han P X, Dong S M, Cui G L, Chen L Q. Adv. Sci., 2021, 8(14): 2100676.
[57]
Janek J, Zeier W G. Nat. Energy, 2016, 1(9): 16141.
[58]
Albertus P, Anandan V, Ban C M, Balsara N, Belharouak I, Buettner-Garrett J, Chen Z H, Daniel C, Doeff M, Dudney N J, Dunn B, Harris S J, Herle S, Herbert E, Kalnaus S, Libera J A, Lu D P, Martin S, McCloskey B D, McDowell M T, Meng Y S, Nanda J, Sakamoto J, Self E C, Tepavcevic S, Wachsman E, Wang C S, Westover A S, Xiao J, Yersak T. ACS Energy Lett., 2021, 1399.
[59]
Chen R S, Nolan A M, Lu J Z, Wang J Y, Yu X Q, Mo Y F, Chen L Q, Huang X J, Li H. Joule, 2020, 4(4): 812.
[60]
Yan J T, Zhu D D, Ye H J, Sun H M, Zhang X D, Yao J M, Chen J Z, Geng L, Su Y, Zhang P, Dai Q S, Wang Z F, Wang J, Zhao J, Rong Z Y, Li H, Guo B Y, Ichikawa S, Gao D W, Zhang L Q, Huang J Y, Tang Y F. ACS Energy Lett., 2022, 7(11): 3855.
[61]
Wang J G, Mei W X, Cui Z X, Shen W X, Duan Q L, Jin Y, Nie J B, Tian Y, Wang Q S, Sun J H. Appl. Therm. Eng., 2020, 171: 115082.
[62]
Xu J J, Mei W X, Zhao C P, Liu Y J, Zhang L, Wang Q S. J. Therm. Anal. Calorim., 2021, 144(2): 273.
[63]
Huang S, Du X N, Richter M. J. Electrochem. Soc., 2020, 167: 090526.
[64]
Zhu X Q, Wang H, Wang X, Gao Y F, Allu S, Cakmak E, Wang Z P. J. Power Sources, 2020, 455: 227939.
[65]
Lee D C, Kim C W. J. Power Sources, 2020, 475: 228678.
[66]
Zhu X Q, Wang Z P, Wang Y T, Wang H, Wang C, Tong L, Yi M. Energy, 2019, 169: 868.
[67]
Zhu X Q, Wang Z P, Wang C, Huang L W. J. Electrochem. Soc., 2018, 165(16): A3613.
[68]
Ye J N, Chen H D, Wang Q S, Huang P F, Sun J H, Lo S. Appl. Energy, 2016, 182: 464.
[69]
Ren D S, Feng X N, Lu L G, He X M, Ouyang M G. Appl. Energy, 2019, 250: 323.
[70]
Liu J L, Duan Q L, Ma M N, Zhao C P, Sun J H, Wang Q S. J. Power Sources, 2020, 445: 227263.
[71]
Togasaki N, Yokoshima T, Osaka T. J. Electrochem. Soc., 2022, 169(3): 030547.
[72]
Zhang L L, Ma Y L, Cheng X Q, Du C Y, Guan T, Cui Y Z, Sun S, Zuo P J, Gao Y Z, Yin G P. J. Power Sources, 2015, 293: 1006.
[73]
Guo R, Lu L G, Ouyang M G, Feng X N. Sci. Rep., 2016, 6: 30248.
[74]
Lee D C, Lee J J, Kim J S, Cho S, Kim C W. Appl. Therm. Eng., 2020, 175: 115422.
[75]
Ouyang D X, Weng J W, Chen M Y, Liu J H, Wang J. Int. J. Energy Res., 2020, 44(1): 229.
[76]
Al-Hallaj S, Selman J R. J. Power Sources, 2002, 110(2): 341.
[77]
Wu M S, Liu K H, Wang Y Y, Wan C C. J. Power Sources, 2002, 109(1): 160.
[78]
Jeon D H, Baek S M. Energy Convers. Manag., 2011, 52(8/9): 2973.
[79]
Kim U S, Yi J, Shin C B, Han T, Park S. J. Electrochem. Soc., 2013, 160(6): A990.
[80]
Doyle M, Fuller T F, Newman J. J. Electrochem. Soc., 1993, 140(6): 1526.
[81]
Fuller T F, Doyle M, Newman J. J. Electrochem. Soc., 1994, 141(1): 1.
[82]
Pals C R, Newman J. J. Electrochem. Soc., 1995, 142(10): 3274.
[83]
Pals C R, Newman J. J. Electrochem. Soc., 1995, 142(10): 3282.
[84]
Madani S, Schaltz E, Knudsen Kær S. Batteries, 2018, 4(2): 20.
[85]
Mastali M, Foreman E, Modjtahedi A, Samadani E, Amirfazli A, Farhad S, Fraser R A, Fowler M. Int. J. Therm. Sci., 2018, 129: 218.
[86]
Lai Y Q, Du S L, Ai L, Ai L H, Cheng Y, Tang Y W, Jia M. Int. J. Hydrog. Energy, 2015, 40(38): 13039.
[87]
He C X, Yue Q L, Wu M C, Chen Q, Zhao T S. Int. J. Heat Mass Transf., 2021, 181: 121855.
[88]
Ren H L, Jia L, Dang C, Qi Z L. J. Energy Storage, 2022, 50: 104277.
[89]
Jiang G W, Zhuang L, Hu Q H, Liu Z Q, Huang J H. Appl. Therm. Eng., 2020, 171: 115080.
[90]
Bahiraei F, Ghalkhani M, Fartaj A, Nazri G A. Appl. Therm. Eng., 2017, 125: 904.
[91]
Samba A, Omar N, Gualous H, Capron O, Van den Bossche P, Van Mierlo J. Electrochimica Acta, 2014, 147: 319.
[92]
He T F, Zhang T, Wang Z R, Cai Q. Appl. Energy, 2022, 313: 118797.
[93]
Feng X N. Doctoral Dissertation of Tsinghua University, 2016.
冯旭宁. 清华大学博士论文, 2016.).
[94]
Hatchard T D, MacNeil D D, Basu A, Dahn J R. J. Electrochem. Soc., 2001, 148(7): A755.
[95]
Kim G H, Pesaran A, Spotnitz R. J. Power Sources, 2007, 170(2): 476.
[96]
Ren D S, Liu X, Feng X N, Lu L G, Ouyang M G, Li J Q, He X M. Appl. Energy, 2018, 228: 633.
[97]
Wang Y, Ren D S, Feng X N, Wang L, Ouyang M G. Appl. Energy, 2022, 306: 117943.
[98]
Chombo P V, Laoonual Y. J. Power Sources, 2020, 478: 228649.
[99]
Liu K, Liu Y Y, Lin D C, Pei A, Cui Y. Sci. Adv., 2018, 4(6): eaas9820.
[100]
Zhou F, Zhao X M, Dahn J R. J. Electrochem. Soc., 2010, 157(7): A798.
[101]
Zhou F, Zhao X M, Jiang J W, Dahn J R. Electrochem. Solid-State Lett., 2009, 12(4): A81.
[102]
Hilgers M, Achenbach W. Hybrid Vehicles. Alternative Powertrains and Extensions to the Conventional Powertrain, 2021.
[103]
Cho W, Kim S M, Song J H, Yim T, Woo S G, Lee K W, Kim J S, Kim Y J. J. Power Sources, 2015, 282: 45.
[104]
Lee D J, Scrosati B, Sun Y K. J. Power Sources, 2011, 196(18): 7742.
[105]
Ji W X, Wang F, Liu D T, Qian J F, Cao Y L, Chen Z X, Yang H X, Ai X P. J. Mater. Chem. A, 2016, 4(29): 11239.
[106]
Xia L, Li S L, Ai X P, Yang H X, Cao Y L. Energy Environ. Sci., 2011, 4(8): 2845.
[107]
Naguib M, Allu S, Simunovic S, Li J L, Wang H, Dudney N J. Joule, 2018, 2(1): 155.
[108]
Ding F, Xu W, Choi D, Wang W, Li X L, Engelhard M H, Chen X L, Yang Z G, Zhang J G. J. Mater. Chem., 2012, 22(25): 12745.
[109]
Lee M L, Li Y H, Liao S C, Chen J M, Yeh J W, Shih H C. Appl. Surf. Sci., 2012, 258(16): 5938.
[110]
Eom J Y, Cho Y H, Kim S I, Han D, Sohn D. J. Alloys Compd., 2017, 723: 456.
[111]
Gao K, Li S D. J. Power Sources, 2014, 270: 304.
[112]
Zhang H Y, Chen Y T, Li J, He C H, Chen Y M. Int. J. Hydrog. Energy, 2014, 39(28): 16096.
[113]
Ren B, Li W, Wei A J, Bai X, Zhang L H, Liu Z F. J. Alloys Compd., 2018, 740: 784.
[114]
Chen Y T, Zhang H Y, Li Y Y, Chen Y M, Luo T. Int. J. Hydrog. Energy, 2017, 42(10): 7195.
[115]
Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X W. Energy Environ. Sci., 2014, 7(12): 3857.
[116]
Kong L X, Li C, Jiang J C, Pecht M. Energies, 2018, 11(9): 2191.
[117]
Jeong H S, Lee S Y. J. Power Sources, 2011, 196(16): 6716.
[118]
Choudhury S, Azizi M, Raguzin I, Göbel M, Michel S, Simon F, Willomitzer A, Mechtcherine V, Stamm M, Ionov L. Phys. Chem. Chem. Phys., 2017, 19(18): 11239.
[119]
Miao Y E, Zhu G N, Hou H Q, Xia Y Y, Liu T X. J. Power Sources, 2013, 226: 82.
[120]
Kim J K, Niedzicki L, Scheers J, Shin C R, Lim D H, Wieczorek W, Johansson P, Ahn J H, Matic A, Jacobsson P. J. Power Sources, 2013, 224: 93.
[121]
Liu L, Park J, Lin X K, Sastry A M, Lu W. J. Power Sources, 2014, 268: 482.
[122]
Long M C, Duan P H, Gao Y, Wang X L, Wu G, Wang Y Z. Chem. Eng. J., 2022, 432: 134394.
[123]
Min Y, Guo L, Wei G Y, Xian D X, Zhang B, Wang L. Chem. Eng. J., 2022, 443: 136480.
[124]
Baginska M, Blaiszik B J, Merriman R J, Sottos N R, Moore J S, White S R. Adv. Energy Mater., 2012, 2(5): 583.
[125]
Li H, Wu D B, Wu J, Dong L Y, Zhu Y J, Hu X L. Adv. Mater., 2017, 29(44): 1703548.
[126]
Liu K, Liu W, Qiu Y C, Kong B, Sun Y M, Chen Z, Zhuo D, Lin D C, Cui Y. Sci. Adv., 2017, 3(1): e1601978.
[127]
Chou L Y, Ye Y S, Lee H K, Huang W X, Xu R, Gao X, Chen R J, Wu F, Tsung C K, Cui Y. Nano Lett., 2021, 21(5): 2074.
[128]
Wang Y, Mao Y, Bai Q Y, Li C L, Guo R, Xie J Y. Solid State Ion., 2019, 337: 7.
[129]
Wang W, Liao C, Liu L X, Cai W, Yuan Y, Hou Y B, Guo W W, Zhou X, Qiu S L, Song L, Kan Y C, Hu Y. J. Power Sources, 2019, 420: 143.
[130]
Xia L, Xia Y G, Wang C S, Hu H S, Lee S X, Yu Q, Chen H C, Liu Z P. ChemElectroChem, 2015, 2(11): 1707.
[131]
Wang J H, Yamada Y, Sodeyama K, Watanabe E, Takada K, Tateyama Y, Yamada A. Nat. Energy, 2018, 3(1): 22.
[132]
Zeng Z Q, Murugesan V, Han K S, Jiang X Y, Cao Y L, Xiao L F, Ai X P, Yang H X, Zhang J G, Sushko M L, Liu J. Nat. Energy, 2018, 3(8): 674.
[133]
Wang J H, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y, Yamada A. Nat. Commun., 2016, 7: 12032.
[134]
Hou J X, Lu L G, Wang L, Ohma A, Ren D S, Feng X N, Li Y, Li Y L, Ootani I, Han X B, Ren W N, He X M, Nitta Y, Ouyang M. Nat. Commun., 2020, 11: 5100.
[135]
Ren X D, Chen S R, Lee H, Mei D H, Engelhard M H, Burton S D, Zhao W G, Zheng J M, Li Q Y, Ding M S, Schroeder M, Alvarado J, Xu K, Meng Y S, Liu J, Zhang J G, Xu W. Chem, 2018, 4(8): 1877.
[136]
Chen S R, Zheng J M, Mei D H, Han K S, Engelhard M H, Zhao W G, Xu W, Liu J, Zhang J G. Adv. Mater., 2018, 30(21): 1706102.
[137]
Chen S R, Zheng J M, Yu L, Ren X D, Engelhard M H, Niu C J, Lee H, Xu W, Xiao J, Liu J, Zhang J G. Joule, 2018, 2(8): 1548.
[138]
Wu Y, Feng X N, Yang M, Zhao C Z, Liu X, Ren D S, Ma Z, Lu L G, Wang L, Xu G L, He X M, Amine K, Ouyang M. Adv. Sci., 2022, 9(32): 2204059.
[139]
Hoang H A, Kim D. Chem. Eng. J., 2022, 435: 135092.
[140]
Chen R S, Yao C X, Yang Q, Pan H Y, Yu X Q, Zhang K, Li H. ACS Appl. Mater. Interfaces, 2021, 13(16): 18743.
[141]
Pham M T M, Darst J J, Walker W Q, Heenan T M M, Cell Rep. Phys. Sci., 2021, 2: 100360.
[142]
Ye Y S, Chou L Y, Liu Y Y, Wang H S, Lee H K, Huang W X, Wan J Y, Liu K, Zhou G M, Yang Y F, Yang A K, Xiao X, Gao X, Boyle D T, Chen H, Zhang W B, Kim S C, Cui Y. Nat. Energy, 2020, 5(10): 786.

Funding

National Project(2209KW0014)
PDF(4951 KB)

Accesses

Citation

Detail

Sections
Recommended

/