Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts

Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang

Prog Chem ›› 2023, Vol. 35 ›› Issue (4) : 509-518.

PDF(5401 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5401 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (4) : 509-518. DOI: 10.7536/PC220939
Review

Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts

Author information +
History +

Abstract

Photocatalysis is an attractive technology for clean energy production and environmental pollution prevention, which is of significant importance in promoting the realization of “carbon peaking and carbon neutral” in the future and adjusting the energy structure of China. However, among the various photocatalytic materials, bismuth-based catalysts with layered structures are of considerable attention in the field of photocatalysis owing to their suitable band gap. However, the photocatalytic activity of bismuth-based catalysts is limited by the lower separation and transport efficiency of carriers. This paper provides a summary of the strategies to enhance the photogenerated carrier separation and transport efficiency of bismuth-based catalysts through surface interface modulation, including morphology modulation, defect engineering, heteroatom doping and heterostructure construction. Particularly, the mechanism of the above strategies for improving the strength of the built-in electric field of bismuth-based catalysts, constructing efficient internal carrier transport channels and prolonging carrier lifetime is analyzed from the perspective of electronic structure and geometry. It provides a theoretical reference for further research on the design of catalysts with high carrier separation and transport efficiency. Finally, we analyzed the specific reasons for the improvement of carrier separation and transport efficiency by different surface interface strategies and the challenges and development prospects of bismuth-based catalysts in industrial applications.

Key words

surface interface modulation strategy / bismuth-based catalyst / photogenerated carrier / electronic structure / geometric structure

Cite this article

Download Citations
Yixue Xu , Shishi Li , Xiaoshuang Ma , et al . Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts[J]. Progress in Chemistry. 2023, 35(4): 509-518 https://doi.org/10.7536/PC220939

References

[1]
Ma Y, Wang X L, Jia Y S, Chen X B, Han H X, Li C. Chem. Rev., 2014, 114(19): 9987.
[2]
Di J, Xia J X, Li H M, Guo S J, Dai S. Nano Energy, 2017, 41: 172.
[3]
Ouyang T, Wang H J, Huang H H, Wang J W, Guo S, Liu W J, Zhong D C, Lu T B. Angew. Chem. Int. Ed., 2018, 57(50): 16480.
[4]
Kominami H, Yamamoto S, Imamura K, Tanaka A, Hashimoto K. Chem. Commun., 2014, 50(35): 4558.
[5]
Yang X F, Qin J L, Jiang Y, Chen K M, Yan X H, Zhang D, Li R, Tang H. Appl. Catal. B Environ., 2015, 166: 231.
[6]
Xia D H, Liu H D, Xu B H, Wang Y C, Liao Y H, Huang Y J, Ye L Q, He C, Wong P K, Qiu R L. Appl. Catal. B Environ., 2019, 245: 177.
[7]
Guan Y, Wu J, Lin Y Y, Liu Q Z, Qi Y F, Pan W G, He P, Qi X M, Wang R, Ji Z H. Appl. Surf. Sci., 2019, 481: 838.
[8]
Guan Y, Wu J, Man X K, Liu Q Z, Qi Y F, He P, Qi X M. Chem. Eng. J., 2020, 396: 125234.
[9]
Kim T W, Choi K S. Science, 2014, 343(6174): 990.
[10]
Fan Z, Zhao Y B, Zhai W, Qiu L, Li H, Hoffmann M R. RSC Adv., 2016, 6(3): 2028.
[11]
Zhang K, Wang J, Jiang W J, Yao W Q, Yang H P, Zhu Y F. Appl. Catal. B Environ., 2018, 232: 175.
[12]
Kudo A, Miseki Y. Chem. Soc. Rev., 2009, 38(1): 253.
[13]
Chen L X. PANS, 2020, 117(16): 8672.
[14]
Li L, Salvador P A, Rohrer G S. Nanoscale, 2014, 6(1): 24.
[15]
Xiong J, Di J, Li H M. Adv. Sci., 2018, 5(7): 1800244.
[16]
Cui P Z, Wang J L, Wang Z M, Chen J, Xing X R, Wang L Z, Yu R B. Nano Res., 2016, 9(3): 593.
[17]
Jin X L, Lv C D, Zhou X, Xie H Q, Sun S F, Liu Y, Meng Q Q, Chen G. Nano Energy, 2019, 64: 103955.
[18]
Ye L Q, Jin X L, Liu C, Ding C H, Xie H Q, Chu K H, Wong P K. Appl. Catal. B Environ., 2016, 187: 281.
[19]
Chen X, Zhang J, Liu L, Hu B R, Zhao Y L, Zhao S, Zhao W T, Li S, Hai X. Appl. Surf. Sci., 2019, 491: 1.
[20]
Xiao L B, Lin R B, Wang J, Cui C, Wang J Y, Li Z Q. J. Colloid Interface Sci., 2018, 523: 151.
[21]
Di J, Zhu C, Ji M X, Duan M L, Long R, Yan C, Gu K Z, Xiong J, She Y B, Xia J X, Li H M, Liu Z. Angew. Chem. Int. Ed., 2018, 57(45): 14847.
[22]
Luo Z S, Ye X Y, Zhang S J, Xue S K, Yang C, Hou Y D, Xing W D, Yu R, Sun J, Yu Z Y, Wang X C. Nat. Commun., 2022, 13: 2230.
[23]
Bai Y, Ye L Q, Chen T, Wang L, Shi X, Zhang X, Chen D. ACS Appl. Mater. Interfaces, 2016, 8(41): 27661.
[24]
Chen F, Huang H W, Ye L Q, Zhang T R, Zhang Y H, Han X P, Ma T Y. Adv. Funct. Mater., 2018, 28(46): 1804284.
[25]
Sun M L, Dong X A, Lei B, Li J Y, Chen P, Zhang Y X, Dong F. Nanoscale, 2019, 11(43): 20562.
[26]
Ding J, Dai Z, Qin F, Zhao H P, Zhao S, Chen R. Appl. Catal. B Environ., 2017, 205: 281.
[27]
Sun Z L, Yang X L, Yu X F, Xia L H, Peng Y H, Li Z, Zhang Y, Cheng J B, Zhang K S, Yu J Q. Appl. Catal. B Environ., 2021, 285: 119790.
[28]
Huang H W, Zhou C, Jiao X C, Yuan H F, Zhao J W, He C Q, Hofkens J, Roeffaers M B J, Long J L, Steele J A. ACS Catal., 2020, 10(2): 1439.
[29]
Di J, Chen C, Zhu C, Song P, Xiong J, Ji M X, Zhou J D, Fu Q D, Xu M Z, Hao W, Xia J X, Li S Z, Li H M, Liu Z. ACS Appl. Mater. Interfaces, 2019, 11(34): 30786.
[30]
Gao S, Gu B C, Jiao X C, Sun Y F, Zu X L, Yang F, Zhu W G, Wang C M, Feng Z M, Ye B J, Xie Y. J. Am. Chem. Soc., 2017, 139(9): 3438.
[31]
Yang Z P, Shi Y B, Li H, Mao C L, Wang X B, Liu X F, Liu X, Zhang L Z. Environ. Sci. Technol., 2022, 56(6): 3587.
[32]
Di J, Xia J X, Chisholm M F, Zhong J, Chen C, Cao X Z, Dong F, Chi Z, Chen H L, Weng Y X, Xiong J, Yang S Z, Li H M, Liu Z, Dai S. Adv. Mater., 2019, 31(28): 1807576.
[33]
Li L Q, Long R, Bertolini T, Prezhdo O V. Nano Lett., 2017, 17(12): 7962.
[34]
Zhou W, Fu H G. Inorg. Chem. Front., 2018, 5(6): 1240.
[35]
Xu Y C, Li H Z, Sun B J, Qiao P Z, Ren L P, Tian G H, Jiang B J, Pan K, Zhou W. Chem. Eng. J., 2020, 379: 122295.
[36]
Bai S, Zhang N, Gao C, Xiong Y J. Nano Energy, 2018, 53: 296.
[37]
Li Z A, Wang J L, Chen J F, Liu L, Yang X F, Chen T, Chen Z Z, Yang M M, Yan W S, Fu Z P, Liu M, Lu Y L. J. Alloys Compd., 2019, 806: 492.
[38]
Ikram M, Hassan J, Raza A, Haider A, Naz S, Ul-Hamid A, Haider J, Shahzadi I, Qamar U, Ali S. RSC Adv., 2020, 10(50): 30007.
[39]
Wang S, Bai L M, Ao X L. RSC Adv., 2018, 8(64): 36745.
[40]
Wang Y Q, Xu X X, Lu W, Huo Y Q, Bian L J. Dalton Trans., 2018, 47(12): 4219.
[41]
Li J, Cai L J, Shang J, Yu Y, Zhang L Z. Adv. Mater., 2016, 28(21): 4059.
[42]
Wang S Y, Ding X, Zhang X H, Pang H, Hai X, Zhan G M, Zhou W, Song H, Zhang L Z, Chen H, Ye J H. Adv. Funct. Mater., 2017, 27(47): 1703923.
[43]
Shi Y B, Zhan G M, Li H, Wang X B, Liu X F, Shi L J, Wei K, Ling C C, Li Z L, Wang H, Mao C L, Liu X, Zhang L Z. Adv. Mater., 2021, 33(38): 2100143.
[44]
Zhou J, Zhou J B, Hu Z S, Wang L. Mater. Sci. Semicond. Process., 2019, 90: 112.
[45]
Ding X, Zhao K, Zhang L Z. Environ. Sci. Technol., 2014, 48(10): 5823.
[46]
Jin X X, Wang R Y, Zhang L X, Si R, Shen M, Wang M, Tian J J, Shi J L. Angew. Chem. Int. Ed., 2020, 59(17): 6827.
[47]
Wang Q, Li J, Tu X. Chem. Mater., 2019, 32: 734.
[48]
Di J, Chen C, Yang S Z, Chen S M, Duan M L, Xiong J, Zhu C, Long R, Hao W, Chi Z, Chen H L, Weng Y X, Xia J X, Song L, Li S Z, Li H M, Liu Z. Nat. Commun., 2019, 10: 2840.
[49]
Jin X L, Xu Y X, Zhou X, Lv C D, Huang Q Z, Chen G, Xie H Q, Ge T, Cao J, Zhan J Q, Ye L Q. ACS Mater. Lett., 2021, 3(4): 364.
[50]
Zhang X C, Guan M H, Zhang Q R, Zhang C M, Li R, Liu J X, Wang Y W, Fan C M, Acta Phys. Sin., 2021, 70(8): 087101.
张小超, 管美画, 张启瑞, 张长明, 李瑞, 刘建新, 王雅文, 樊彩梅. 物理学报, 2021, 70(8): 087101.).
[51]
Hao L, Kang L, Huang H W, Ye L Q, Han K L, Yang S Q, Yu H J, Batmunkh M, Zhang Y H, Ma T Y. Adv. Mater., 2019, 31(25): 1900546.
[52]
Xie M Z, Fu X D, Jing L Q, Luan P, Feng Y J, Fu H G. Adv. Energy Mater., 2014, 4(5): 1300995.
[53]
Wang M Y, Sun L, Lin Z Q, Cai J H, Xie K P, Lin C J. Energy Environ. Sci., 2013, 6(4): 1211.
[54]
Yu J G, Low J, Xiao W, Zhou P, Jaroniec M. J. Am. Chem. Soc., 2014, 136(25): 8839.
[55]
Geng Q, Xie H T, He Y, Sun Y J, Hou X F, Wang Z M, Dong F. Appl. Catal. B Environ., 2021, 297: 120492.
[56]
Li J F, Li Z Y, Liu X M, Li C Y, Zheng Y F, Yeung K W K, Cui Z D, Liang Y Q, Zhu S L, Hu W B, Qi Y J, Zhang T J, Wang X B, Wu S L. Nat. Commun., 2021, 12: 1224.
[57]
Lu M L, Xiao X Y, Wang Y, Chen J Y. J. Alloys Compd., 2020, 831: 154789.
[58]
Kosco J, Bidwell M, Cha H, Martin T, Howells C T, Sachs M, Anjum D H, Gonzalez Lopez S, Zou L Y, Wadsworth A, Zhang W M, Zhang L S, Tellam J, Sougrat R, Laquai F, DeLongchamp D M, Durrant J R, McCulloch I. Nat. Mater., 2020, 19(5): 559.
[59]
Hu J D, Chen D Y, Mo Z, Li N J, Xu Q F, Li H, He J H, Xu H, Lu J M. Angew. Chem., 2019, 131(7): 2095.
[60]
Chen L, Wang J F, Li X J, Zhao C R, Hu X, Wu Y, He Y M. Inorg. Chem. Front., 2022, 9(11): 2714.
[61]
Wang L, Zhao X, Lv D D, Liu C W, Lai W H, Sun C Y, Su Z M, Xu X, Hao W C, Dou S X, Du Y. Adv. Mater., 2020, 32(48): 2004311.
[62]
Li G J, Lian Z, Wan Z W, Liu Z N, Qian J W, Deng Y, Zhang S L, Zhong Q. Appl. Catal. B Environ., 2022, 317: 121787.
[63]
Chen W X, Wei W, Wang K F, Zhang N, Chen G L, Hu Y J, Ostrikov K K. Nanoscale, 2021, 13(12): 6201.
[64]
Xu Q L, Zhang L Y, Cheng B, Fan J J, Yu J G. Chem, 2020, 6(7): 1543.
[65]
Li S J, Wang C C, Liu Y P, Cai M J, Wang Y N, Zhang H Q, Guo Y, Zhao W, Wang Z H, Chen X B. Chem. Eng. J., 2022, 429: 132519.
[66]
Xu Y X, Jin X L, Ge T, Xie H Q, Sun R X, Su F Y, Li X, Ye L Q. Chem. Eng. J., 2021, 409: 128178.
[67]
Shi Y B, Li J, Mao C L, Liu S, Wang X B, Liu X F, Zhao S X, Liu X, Huang Y Q, Zhang L Z. Nat. Commun., 2021, 12: 5923.

Funding

National Natural Science Foundation of China(61774033)
Key Research and Development Project of Anhui Province(2022107020009)
PDF(5401 KB)

Accesses

Citation

Detail

Sections
Recommended

/