Composite Polymer Electrolytes with Multi-Dimensional Non-Lithium Inorganic Hybird Components for Lithium Batteries

Bingyi Ma, Sheng Huang, Shuanjin Wang, Min Xiao, Dongmei Han, Yuezhong Meng

Prog Chem ›› 2023, Vol. 35 ›› Issue (9) : 1327-1340.

PDF(8569 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(8569 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (9) : 1327-1340. DOI: 10.7536/PC221007
Review

Composite Polymer Electrolytes with Multi-Dimensional Non-Lithium Inorganic Hybird Components for Lithium Batteries

Author information +
History +

Abstract

The traditional electrolyte is flammable, easy to leak, and toxic, which affects the safety performance of batteries working for a long time. In view of the above problems, recently researchers have focused on the development of (quasi) solid electrolyte. Solid composite electrolyte composed of inorganic fillers and polymer has the advantages of high ionic conductivity and mechanical stability of inorganic electrolyte, flexibility and low interface impedance of polymer electrolyte, which has attracted extensive attention of researchers. Inorganic components mainly include active Li+-containing fillers and inert Li+-free fillers. The inert Li+-free fillers possess the benefits of low cost and easy preparation process, so they have greater potential for large-scale industrial applications. In this paper, the performance requirements of composite polymer electrolytes are reviewed. Starting from non-lithium inorganic hybrid components, we summarize the research on improving the performance of composite polymer electrolyte with inert Li+-free fillers, including zero-dimensional nanoparticles, one-dimensional nanotubes (nanowires, nanorods), two-dimensional boron nitride nanosheets, and three-dimensional structure of fillers. Different dimensions of analysis and thinking aim to shed light on the design and application of inert fillers-polymer electrolytes, and we also look forward to the broad prospects of non-lithium inorganic components in the industrial application of composite electrolyte.

Contents

1 Introduction

2 Performance requirements

2.1 High ionic conductivity

2.2 High lithium-ion transference number

2.3 Wide electrochemical stability window

2.4 Mechanical strength

2.5 Thermal and chemical stability

3 Multi-dimensional non-lithium inorganic hybrid component

3.1 Zero-dimensional nanoparticles

3.2 One-dimensional nanostructure

3.3 Two-dimensional nanosheet

3.4 Three-dimensional strucutre

4 Conclusion and outlook

Key words

composite-polymer electrolyte / inert Li+-free fillers / multi-dimensional / ionic conductivity / electrochemical performance

Cite this article

Download Citations
Bingyi Ma , Sheng Huang , Shuanjin Wang , et al . Composite Polymer Electrolytes with Multi-Dimensional Non-Lithium Inorganic Hybird Components for Lithium Batteries[J]. Progress in Chemistry. 2023, 35(9): 1327-1340 https://doi.org/10.7536/PC221007

References

[1]
Tarascon J M, Armand M. Nature, 2001, 414(6861): 359.
[2]
Aricò A S, Bruce P, Scrosati B, Tarascon J M, van Schalkwijk W. Nat. Mater., 2005, 4(5): 366.
[3]
Cheng X B, Zhao C Z, Yao Y X, Liu H, Zhang Q. Chem, 2019, 5(1): 74.
[4]
Li C F, Liu S H, Shi C G, Liang G H, Lu Z T, Fu R W, Wu D C. Nat. Commun., 2019, 10: 1363.
[5]
Wang R H, Cui W S, Chu F L, Wu F X. J. Energy Chem., 2020, 48: 145.
[6]
Liu Z X, Huang Y, Huang Y, Yang Q, Li X L, Huang Z D, Zhi C Y. Chem. Soc. Rev., 2020, 49(1): 180.
[7]
Lu Y Y, Tu Z Y, Archer L A. Nat. Mater., 2014, 13(10): 961.
[8]
Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135(4): 1167.
[9]
Xu R, Cheng X B, Yan C, Zhang X Q, Xiao Y, Zhao C Z, Huang J Q, Zhang Q. Matter, 2019, 1(2): 317.
[10]
Wang Q S, Jiang L H, Yu Y, Sun J H. Nano Energy, 2019, 55: 93.
[11]
Goodenough J B, Kim Y. Chem. Mater., 2010, 22(3): 587.
[12]
Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C. J. Power Sources, 2014, 257: 421.
[13]
Li W Y, Yao H B, Yan K, Zheng G Y, Liang Z, Chiang Y M, Cui Y. Nat. Commun., 2015, 6: 7436.
[14]
Wan J Y, Xie J, Kong X, Liu Z, Liu K, Shi F F, Pei A, Chen H, Chen W, Chen J, Zhang X K, Zong L Q, Wang J Y, Chen L Q, Qin J, Cui Y. Nat. Nanotechnol., 2019, 14(7): 705.
[15]
Tang W J, Tang S, Guan X Z, Zhang X Y, Xiang Q, Luo J Y. Adv. Funct. Mater., 2019, 29(16): 1900648.
[16]
Zhao C Z, Zhao B C, Yan C, Zhang X Q, Huang J Q, Mo Y F, Xu X X, Li H, Zhang Q. Energy Storage Mater., 2020, 24: 75.
[17]
Wang Q, Yuan B H, Lu Y F, Shen F, Zhao B, Han X G. Nanotechnology, 2021, 32(49): 495401.
[18]
Zhao Q, Stalin S, Zhao C Z, Archer L A. Nat. Rev. Mater., 2020, 5(3): 229.
[19]
Lim H D, Park J H, Shin H J, Jeong J, Kim J T, Nam K W, Jung H G, Chung K Y. Energy Storage Mater., 2020, 25: 224.
[20]
Pan K C, Zhang L, Qian W W, Wu X K, Dong K, Zhang H T, Zhang S J. Adv. Mater., 2020, 32(17): 2000399.
[21]
Li L, Deng Y, Chen G. J. Energy Chem., 2020, 50: 154.
[22]
Li S, Zhang S Q, Shen L, Liu Q, Ma J B, Lv W, He Y B, Yang Q H. Adv. Sci., 2020, 7(5): 1903088.
[23]
Zhao Q, Liu X, Stalin S, Khan K, Archer L A. Nat. Energy, 2019, 4(5): 365.
[24]
Zhao C Z, Zhao Q, Liu X, Zheng J X, Stalin S, Zhang Q, Archer L A. Adv. Mater., 2020, 32(12): 1905629.
[25]
Wu N, Li Y T, Dolocan A, Li W, Xu H H, Xu B Y, Grundish N S, Cui Z M, Jin H B, Goodenough J B. Adv. Funct. Mater., 2020, 30(22): 2000831.
[26]
Fan L, Wei S Y, Li S Y, Li Q, Lu Y Y. Adv. Energy Mater., 2018, 8(11): 1702657.
[27]
Zhang Z, Wang J, Zhang S, Ying H, Zhuang Z, Ma F, Huang P, Yang T, Han G, Han W Q. Energy Storage Mater., 2021, 43: 229.
[28]
Bao W D, Zhao L Q, Zhao H J, Su L X, Cai X C, Yi B L, Zhang Y, Xie J. Energy Storage Mater., 2021, 43: 258.
[29]
Hoang H A, Le Mong A, Kim D. J. Power Sources, 2021, 507: 230288.
[30]
Guo J Q, Chen Y P, Xiao Y B, Xi C P, Xu G, Li B R, Yang C K, Yu Y. Chem. Eng. J., 2021, 422: 130526.
[31]
Dhatarwal P, Choudhary S, Sengwa R J. Compos. Commun., 2018, 10: 11.
[32]
Duan H, Fan M, Chen W P, Li J Y, Wang P F, Wang W P, Shi J L, Yin Y X, Wan L J, Guo Y G. Adv. Mater., 2019, 31(12): 1807789.
[33]
Hu J K, He P G, Zhang B C, Wang B Y, Fan L Z. Energy Storage Mater., 2020, 26: 283.
[34]
Bag S, Zhou C T, Kim P J, Pol V G, Thangadurai V. Energy Storage Mater., 2020, 24: 198.
[35]
Yao M, Zhang H T, Xing C X, Li Q G, Tang Y J, Zhang F J, Yang K, Zhang S J. Energy Storage Mater., 2021, 41: 51.
[36]
Yao M, Yu T H, Ruan Q Q, Chen Q J, Zhang H T, Zhang S J. ACS Appl. Mater. Interfaces, 2021, 13(39): 47163.
[37]
Wu F, Zhang K, Liu Y R, Gao H C, Bai Y, Wang X R, Wu C. Energy Storage Mater., 2020, 33: 26.
[38]
Bocharova V, Sokolov A P. Macromolecules, 2020, 53(11): 4141.
[39]
Costa C M, Lee Y H, Kim J H, Lee S Y, Lanceros-MÉndez S. Energy Storage Mater., 2019, 22: 346.
[40]
Wang X E, Kerr R, Chen F F, Goujon N, Pringle J M, Mecerreyes D, Forsyth M, Howlett P C. Adv. Mater., 2020, 32(18): 1905219.
[41]
Manthiram A, Yu X W, Wang S F. Nat. Rev. Mater., 2017, 2(4): 16103.
[42]
Chen L, Li Y T, Li S P, Fan L Z, Nan C W, Goodenough J B. Nano Energy, 2018, 46: 176.
[43]
Hsu S T, Tran B T, Subramani R, Nguyen H T T, Rajamani A, Lee M Y, Hou S S, Lee Y L, Teng H. J. Power Sources, 2020, 449: 227518.
[44]
Zhao Y, Zhang Y G, Gosselink D, Doan T N L, Sadhu M, Cheang H J, Chen P. Membranes, 2012, 2(3): 553.
[45]
Zhang W Q, Nie J H, Li F, Wang zhong lin, Sun C W. Nano Energy, 2018, 45: 413.
[46]
Zhang Z, Huang Y, Gao H, Hang J X, Li C, Liu P B. J. Membr. Sci., 2020, 598: 117800.
[47]
Lopez J, Mackanic D G, Cui Y, Bao Z N. Nat. Rev. Mater., 2019, 4(5): 312.
[48]
Liu H, Cheng X B, Huang J Q, Yuan H, Lu Y, Yan C, Zhu G L, Xu R, Zhao C Z, Hou L P, He C X, Kaskel S, Zhang Q. ACS Energy Lett., 2020, 5(3): 833.
[49]
Liu S L, Liu W Y, Ba D L, Zhao Y Z, Ye Y H, Li Y Y, Liu J P. Adv. Mater., 2023, 35(2): 2110423.
[50]
Xu K. Chem. Rev., 2014, 114(23): 11503.
[51]
Zou Z Y, Li Y J, Lu Z H, Wang D, Cui Y H, Guo B K, Li Y J, Liang X M, Feng J W, Li H, Nan C W, Armand M, Chen L Q, Xu K, Shi S Q. Chem. Rev., 2020, 120(9): 4169.
[52]
Boaretto N, Meabe L, Martinez-Ibanez M, Armand M, Zhang H. J. Electrochem. Soc., 2020, 167: 070524.
[53]
Cao D X, Sun X, Li Q, Natan A, Xiang P Y, Zhu H L. Matter, 2020, 3(1): 57.
[54]
Li J H, Cai Y F, Wu H M, Yu Z A, Yan X Z, Zhang Q H, Gao T Z, Liu K, Jia X D, Bao Z N. Adv. Energy Mater., 2021, 11(15): 2003239.
[55]
Zhang Q Q, Liu K, Ding F, Liu X J. Nano Res., 2017, 10(12): 4139.
[56]
Jia M Y, Khurram Tufail M, Guo X X. ChemSusChem, 2023, 16(2): e202201801.
[57]
Lv F, Liu K X, Wang Z Y, Zhu J F, Zhao Y, Yuan S. J. Colloid Interface Sci., 2021, 596: 257.
[58]
Li C, Huang Y, Feng X S, Zhang Z, Gao H, Huang J X. J. Colloid Interface Sci., 2021, 594: 1.
[59]
Lee T K, Andersson R, Dzulkurnain N A, Hernández G, Mindemark J, Brandell D. Batter. Supercaps, 2021, 4(4): 653.
[60]
Song Y L, Yang L Y, Li J W, Zhang M Z, Wang Y H, Li S N, Chen S M, Yang K, Xu K, Pan F. Small, 2021, 17(42): 2102039.
[61]
Lee Y S, Ju S H, Kim J H, Hwang S S, Choi J M, Sun Y K, Kim H, Scrosati B, Kim D W. Electrochem. Commun., 2012, 17: 18.
[62]
Ju S H, Lee Y S, Sun Y K, Kim D W. J. Mater. Chem. A, 2013, 1(2): 395.
[63]
Lee Y S, Lee J H, Choi J A, Yoon W Y, Kim D W. Adv. Funct. Mater., 2013, 23(8): 1019.
[64]
Gao L, Luo S B, Li J X, Cheng B W, Kang W M, Deng N P. Energy Storage Mater., 2021, 43: 266.
[65]
Khan S, Fang C Y, Ma Y C, Haq M U, Nisar M, Xu G, Liu Y, Han G R. J. Electrochem. Soc., 2021, 168(2): 022504.
[66]
Liu W, Lin D C, Sun J, Zhou G M, Cui Y. ACS Nano, 2016, 10(12): 11407.
[67]
Ao X, Wang X, Tan J, Zhang S, Su C, Dong L, Tang M, Wang Z, Tian B, Wang H. Nano Energy, 2021, 79: 105475.
[68]
Chen H, Adekoya D, Hencz L, Ma J, Chen S, Yan C, Zhao H J, Cui G L, Zhang S Q. Adv. Energy Mater., 2020, 10(21): 2000049.
[69]
Li C, Huang Y, Chen C, Feng X S, Zhang Z. Appl. Surf. Sci., 2021, 563: 150248.
[70]
Jia W S, Li Z L, Wu Z R, Wang L P, Wu B, Wang Y H, Cao Y, Li J Z. Solid State Ion., 2018, 315: 7.
[71]
Pu J, Zhang K, Wang Z H, Li C W, Zhu K P, Yao Y G, Hong G. Adv. Funct. Mater., 2021, 31(48): 2106315.
[72]
Zheng Y P, Li H H, Yuan H Y, Fan H H, Li W L, Zhang J P. Appl. Surf. Sci., 2018, 434: 596.
[73]
Li M T, Zhu W S, Zhang P F, Chao Y H, He Q, Yang B L, Li H M, Borisevich A, Dai S. Small, 2016, 12(26): 3535.
[74]
Shim J, Kim H J, Kim B G, Kim Y S, Kim D G, Lee J C. Energy Environ. Sci., 2017, 10(9): 1911.
[75]
Zhang X L, Guo W Y, Zhou L Z, Xu Q J, Min Y L. J. Mater. Chem. A, 2021, 9(36): 20530.
[76]
Du L L, Zhang B, Wang X F, Dong C H, Mai L Q, Xu L. Chem. Eng. J., 2023, 451: 138787.
[77]
Lin D C, Yuen P Y, Liu Y Y, Liu W, Liu N, Dauskardt R H, Cui Y. Adv. Mater., 2018, 30(32): 1802661.
[78]
Zhang Z, Huang Y, Gao H, Li C, Huang J X, Liu P B. J. Membr. Sci., 2021, 621: 118940.
[79]
Wang J, Yang J, Shen L, Guo Q Y, He H, Yao X Y. ACS Appl. Energy Mater., 2021, 4(4): 4129.
[80]
Hu J L, Chen K Y, Yao Z G, Li C L. Sci. Bull., 2021, 66(7): 694.
[81]
Tseng Y C, Ramdhani F I, Hsiang S H, Lee T Y, Teng H, Jan J S. J. Membr. Sci., 2022, 641: 119891.
[82]
Wang S S, Zhou L, Tufail M K, Yang L, Zhai P F, Chen R J, Yang W. Chem. Eng. J., 2021, 415: 128846.
[83]
Yao M, Ruan Q Q, Yu T H, Zhang H T, Zhang S J. Energy Storage Mater., 2022, 44: 93.
[84]
Sasikumar M, Krishna R H, Raja M, Therese H A, Balakrishnan N T M, Raghavan P, Sivakumar P. J. Alloys Compd., 2021, 882: 160709.
[85]
Chen N, Xing Y, Wang L L, Liu F, Li L, Chen R J, Wu F, Guo S J. Nano Energy, 2018, 47: 35.
[86]
Judez X, Piszcz M, Coya E, Li C M, Aldalur I, Oteo U, Zhang Y, Zhang W, Rodriguez-Martinez L M, Zhang H, Armand M. Solid State Ion., 2018, 318: 95.
[87]
Tinghua X, Jian S, Shuhong Y, Dandan W, Yaping L, Qingqing P, Du P, Huiling Z, Ying B. Solid State Ionics, 2018, 326: 110.
[88]
Zhou D, Liu R L, He Y B, Li F Y, Liu M, Li B H, Yang Q H, Cai Q, Kang F Y. Adv. Energy Mater., 2016, 6(7): 1502214.
[89]
Peiqi L, Peng L, Haoqing L, Ziyang D, Zhenbao Z, Dengjie C. J. Membr. Sci., 2019, 580: 92.
[90]
Hengfei Q, Kun F, Ying Z, Yuhang Y, Mingyao S, Yudi K, Soo-Hwan J, Feng J, Lifeng C. Energy Storage Mater., 2020, 28: 293.
[91]
Sheng O W, Jin C B, Luo J M, Yuan H D, Huang H, Gan Y P, Zhang J, Xia Y, Liang C, Zhang W K, Tao X Y. Nano Lett., 2018, 18(5): 3104.
[92]
Wu Z J, Xie Z K, Yoshida A, Wang J, Yu T, Wang Z D, Hao X G, Abudula A, Guan G Q. J. Colloid Interface Sci., 2020, 565: 110.
[93]
Xu H L, Ye W, Wang Q R, Han B, Wang J, Wang C Y, Deng Y H. J. Mater. Chem. A, 2021, 9(15): 9826.
[94]
Shen Z C, Zhong J W, Xie W H, Chen J B, Ke X, Ma J M, Shi Z C. Acta Metall. Sin. Engl. Lett., 2021, 34(3): 359.
[95]
Hu J, Wang W H, Zhu X J, Liu S B, Wang Y J, Xu Y J, Zhou S K, He X C, Xue Z G. J. Membr. Sci., 2021, 618: 118697.
[96]
Wang X L, Hao X J, Cai D, Zhang S E, Xia X H, Tu J P. Chem. Eng. J., 2020, 382: 122714.
[97]
An H W, Liu Q S, An J L, Liang S T, Wang X F, Xu Z W, Tong Y J, Huo H, Sun N, Wang Y L, Shi Y F, Wang J J. Energy Storage Mater., 2021, 43: 358.
[98]
Yin X S, Wang L, Kim Y, Ding N, Kong J H, Safanama D, Zheng Y, Xu J W, Repaka D V M, Hippalgaonkar K, Lee S W, Adams S, Zheng G W. Adv. Sci., 2020, 7(19): 2001303.
[99]
Li Y H, Zhang L B, Sun Z J, Gao G X, Lu S Y, Zhu M, Zhang Y F, Jia Z Y, Xiao C H, Bu H T, Xi K, Ding S J. J. Mater. Chem. A, 2020, 8(19): 9579.
[100]
Kim D, Liu X, Yu B Z, Mateti S, O'dell L A, Rong Q Z, Chen Y. Adv. Funct. Mater., 2020, 30(15): 1910813.
[101]
Zhang Z Y, Antonio R G, Leong Choy K. J. Power Sources, 2019, 435: 226736.
[102]
Hyun W J, de Moraes A C M, Lim J M, Downing J R, Park K Y, Tan M T Z, Hersam M C. ACS Nano, 2019, 13(8): 9664.
[103]
Shen B, Zhang T W, Yin Y C, Zhu Z X, Lu L L, Ma C, Zhou F, Yao H B. Chem. Commun., 2019, 55(53): 7703.
PDF(8569 KB)

Accesses

Citation

Detail

Sections
Recommended

/