Catechol Hydrogel as Wet Tissue Adhesive

Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng

Prog Chem ›› 2023, Vol. 35 ›› Issue (4) : 560-576.

PDF(3863 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(3863 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (4) : 560-576. DOI: 10.7536/PC221016
Review

Catechol Hydrogel as Wet Tissue Adhesive

Author information +
History +

Abstract

Wet adhesion plays an important role in the gestation and development of life. The research shows that hydrogel is a kind of intelligent material with both solid and liquid properties. They have been widely used in such areas as wound closure and repair, cell engineering and tissue engineering, owing to their noteworthy versatility and bio-compatibility. However, the physiological environment is usually wet, and the hydration layer on wet tissue surface prevents hydrogel from forming interfacial adhesion bonds with tissue surface. Faced with this challenge, inspired by the fact that the catechol group of DOPA is critical group for the underwater adhesion of mussels, the structure and functional unit design of catechol hydrogel have attracted wide attention. This review introduces the structure and wet adhesion mechanism of mussel foot proteins (Mfps), and the main types of catechol derivatives are classified into natural Mfps or Mfps synthesized by genetic engineering, catechol small molecular compounds, natural polymers modified by catechol groups and synthesized functional polymers containing catechol groups. Nextly, the research progress of catechol hydrogel as wet tissue adhesive in the past decade is summarized, such as tissue wound repair materials, biological coating materials, targeted drug delivery materials and bioelectronic equipment materials. Finally, the opportunities and challenges of catechol hydrogel are prospected.

Key words

mussel foot proteins / adhesion mechanism / catechol / wet tissue-adhesion / hydrogel

Cite this article

Download Citations
Yiming Chen , Huiying Li , Peng Ni , et al . Catechol Hydrogel as Wet Tissue Adhesive[J]. Progress in Chemistry. 2023, 35(4): 560-576 https://doi.org/10.7536/PC221016

References

[1]
Yuk H, Wu J J, Sarrafian T L, Mao X Y, Varela C E, Roche E T, Griffiths L G, Nabzdyk C S, Zhao X H. Nat. Biomed. Eng., 2021, 5(10): 1131.
[2]
Sun Z Q, Guo S S, Fässler R. J. Cell Biol., 2016, 215(4): 445.
[3]
Yuk H, Lin S T, Ma C, Takaffoli M, Fang N X, Zhao X. Nat. Commun., 2016, 8: 14230.
[4]
Zhang Y S, Khademhosseini A. Science, 2017, 356(6337): eaaf3627.
[5]
Sun H, He Y, Wang Z, Liang Q. Adv. Funct. Mater., 2021, 32(6): 2108489.
[6]
Yang C H, Suo Z G. Nat. Rev. Mater., 2018, 3(6): 125.
[7]
Fu F F, Wang J L, Zeng H B, Yu J. ACS Mater. Lett., 2020, 2(10): 1287.
[8]
Xu Y Y, Liu H, Cui X, Shao J, Yao P, Huang J, Qiu X, Huang C. Colloid Surface A, 2020, 593: 124622.
[9]
Shu S D, Li Q, Xu W G, Tu S C, Yan L S, Zhao C W, Ding J X, Chen X S. Adv. Sci. 2018, 5(5): 1700527.
[10]
Zhu H F, Xu G M, He Y Y, Mao H L, Kong D L, Luo K, Tang W B, Liu R, Gu Z W. Adv. Healthc. Mater., 2022, 11(15): 2200874.
[11]
Tavakolizadeh M, Pourjavadi A, Ansari M, Tebyanian H, Seyyed Tabaei S J, Atarod M, Rabiee N, Bagherzadeh M, Varma R S. Green Chem., 2021, 23(3): 1312.
[12]
He X, Li Z K, Li J, Mishra D, Ren Y X, Gates I, Hu J G, Lu Q Y. Small, 2021, 17(49): 2103521.
[13]
Liang Y P, He J H, Guo B L. ACS Nano, 2021, 15(8): 12687.
[14]
Bertsch P, Diba M, Mooney D J, Leeuwenburgh S. C. G. Chem. Rev. 2023, 123(2): 834.
[15]
Ho H. P. B, Yuen Y, Zhao X. Chem. Eng. J. 2022, 431: 133372.
[16]
Su X, Xie W Y, Wang P D, Tian Z L, Wang H, Yuan Z Y, Liu X Z, Huang J Y. Mater. Horiz., 2021, 8(8): 2199.
[17]
Ahn B K, Das S, Linstadt R, Kaufman Y, Martinez-Rodriguez N R, Mirshafian R, Kesselman E, Talmon Y, Lipshutz B H, Israelachvili J N, Waite J H. Nat. Commun., 2015, 6: 8663.
[18]
Stewart R J, Wang C S, Song I T, Jones J P. Adv. Colloid Interface Sci., 2017, 239: 88.
[19]
Fan H L, Wang J H, Gong J P. Adv. Funct. Mater., 2021, 31(11): 2009334.
[20]
Fan X M, Fang Y, Zhou W K, Yan L Y, Xu Y H, Zhu H, Liu H Q. Mater. Horiz., 2021, 8(3): 997.
[21]
Shin M, Shin J Y, Kim K, Yang B, Han J W, Kim N K, Cha H J. J. Colloid Interface Sci., 2020, 563: 168.
[22]
Waite J H. J. Exp. Biol., 2017, 220(4): 517.
[23]
Clancy S K, Sodano A, Cunningham D J, Huang S S, Zalicki P J, Shin S, Ahn B K. Biomacromolecules, 2016, 17(5): 1869.
[24]
Lee H, Scherer N F, Messersmith P B. Proc. Natl. Acad. Sci. U. S. A., 2006, 103(35): 12999.
[25]
Li Y R, Cao Y. Nanoscale Adv., 2019, 1(11): 4246.
[26]
Guo Q, Chen J S, Wang J L, Zeng H B, Yu J. Nanoscale, 2020, 12(3): 1307.
[27]
Aich P, An J, Yang B, Ko Y H, Kim J, Murray J, Cha H J, Roh J H, Park K M, Kim K. Chem. Commun., 2018, 54(89): 12642.
[28]
Zhang W, Yang H, Liu F H, Chen T, Hu G X, Guo D H, Hou Q F, Wu X, Su Y, Wang J B. RSC Adv., 2017, 7(52): 32518.
[29]
Fan H, Gong J P. Adv. Mater. 2021, 2102983.
[30]
Wilker J J. Nat. Chem. Biol., 2011, 7(9): 579.
[31]
Zhang K, Zhang F L, Song Y Y, Fan J B, Wang S T. Chin. J. Chem., 2017, 35(6): 811.
[32]
Cui J W, Yan Y, Such G K, Liang K, Ochs C J, Postma A, Caruso F. Biomacromolecules, 2012, 13(8): 2225.
[33]
Xie C M, Wang X, He H, Ding Y H, Lu X. Adv. Funct. Mater., 2020, 30(25): 1909954.
[34]
Xu Y J, Wei K C, Zhao P C, Feng Q, Choi C K K, Bian L M. Biomater. Sci., 2016, 4(12): 1726.
[35]
Zhang W, Wang R X, Sun Z M, Zhu X W, Zhao Q, Zhang T F, Cholewinski A, Yang F K, Zhao B X, Pinnaratip R, Forooshani P K, Lee B P. Chem. Soc. Rev., 2020, 49(2): 433.
[36]
Teng L, Shao Z W, Bai Q, Zhang X L, He Y S, Lu J Y, Zou D R, Feng C L, Dong C M. Adv. Funct. Mater., 2021, 31(43): 2105628.
[37]
Li Y R, Cheng J, Delparastan P, Wang H Q, Sigg S J, DeFrates K G, Cao Y, Messersmith P B. Nat. Commun., 2020, 11: 3895.
[38]
Ivarsson M, Prenkert M, Cheema A, Wretenberg P, Andjelkov N. CARTILAGE, 2021, 13(2suppl): 663S.
[39]
Hansen D C, Zimlich K R, Bennett B N. Electrochimica Acta, 2019, 301: 411.
[40]
Ohkawa K, Nishida A, Ichimiya K, Matsui Y, Nagaya K, Yuasa A, Yamamoto H. Biofouling, 1999, 14(3): 181.
[41]
Zhou Y J, He Q, Zhou D. J. Food Process. Preserv., 2017, 41(3): e12962.
[42]
Choi Y S, Kang D G, Lim S, Yang Y J, Kim C S, Cha H J. Biofouling, 2011, 27(7): 729.
[43]
Choi Y S, Yang Y J, Yang B, Cha H J. Microb. Cell Factories, 2012, 11(1): 139.
[44]
Jeong Y S, Yang B, Yang B, Shin M, Seong J, Cha H J, Kwon I. Biotechnol. Bioeng., 2020, 117(7): 1961.
[45]
Wang J, Scheibel T. Biotechnol. J., 2018, 13(12): 1800146.
[46]
Wei W, Petrone L, Tan Y, Cai H, Israelachvili J N, Miserez A, Waite J H. Adv. Funct. Mater., 2016, 26(20): 3496.
[47]
Fichman G, Andrews C, Patel N L, Schneider J P. Adv. Mater., 2021, 33(40): 2103677.
[48]
Laura Alfieri M, Weil T, Ng D Y W, Ball V. Adv. Colloid Interface Sci., 2022, 305: 102689.
[49]
Liang H S, Zhou B, Wu D, Li J, Li B. Adv. Colloid Interface Sci., 2019, 272: 102019.
[50]
Lin F C, Wang Z, Chen J S, Lu B L, Tang L R, Chen X R, Lin C S, Huang B, Zeng H B, Chen Y D. J. Mater. Chem. B, 2020, 8(18): 4002.
[51]
Liu B C, Wang Y, Miao Y, Zhang X Y, Fan Z X, Singh G, Zhang X Y, Xu K G, Li B Y, Hu Z Q, Xing M. Biomaterials, 2018, 171: 83.
[52]
Su X, Luo Y, Tian Z L, Yuan Z Y, Han Y M, Dong R F, Xu L, Feng Y T, Liu X Z, Huang J Y. Mater. Horiz., 2020, 7(10): 2651.
[53]
Hao S W, Shao C Y, Meng L, Cui C, Xu F, Yang J. ACS Appl. Mater. Interfaces, 2020, 12(50): 56509.
[54]
Bai Z X, Wang T Y, Zheng X, Huang Y P, Chen Y N, Dan W H. Polym. Eng. Sci., 2021, 61(1): 278.
[55]
Jafari H, Ghaffari-Bohlouli P, Niknezhad S V, Abedi A, Izadifar Z, Mohammadinejad R, Varma R S, Shavandi A. J. Mater. Chem. B, 2022, 10(31): 5873.
[56]
Kord Forooshani P. Lee B P. J. Polym. Sci. A Polym. Chem., 2017, 55(1): 9.
[57]
Fan X M, Zhou W K, Chen Y M, Yan L Y, Fang Y, Liu H Q. ACS Appl. Mater. Interfaces, 2020, 12(28): 32031.
[58]
Quan Hu, Liu Ouyang, Zhang Li, Li Yang. Molecules, 2019, 24(14): 2586.
[59]
Huang Y, Zhao X, Zhang Z Y, Liang Y P, Yin Z H, Chen B J, Bai L, Han Y, Guo B L. Chem. Mater., 2020, 32(15): 6595.
[60]
Geng H M, Cui J W, Hao J C. Acta Chimica Sinica, 2020, 78(2): 105.
耿慧敏, 崔基炜, 郝京诚. 化学进展. 2020, 78(2): 105.).
[61]
Zhu W Z, Peck Y, Iqbal J, Wang D A. Biomaterials, 2017, 147: 99.
[62]
Liu F F, Liu X, Chen F, Fu Q. Prog. Polym. Sci., 2021, 123: 101472.
[63]
Liu K, Dong X Z, Wang Y, Wu X P, Dai H L. Carbohydr. Polym., 2022, 298: 120047.
[64]
Kim K, Ryu J H, Koh M Y, Yun S P, Kim S, Park J P, Jung C W, Lee M S, Seo H I, Kim J H, Lee H. Sci. Adv., 2021, 7(13): eabc9992.
[65]
Zhong Y J, Seidi F, Wang Y L, Zheng L, Jin Y C, Xiao H N. Carbohydr. Polym., 2022, 298: 120103.
[66]
Sun C Y, Zeng X L, Zheng S H, Wang Y L, Li Z Y, Zhang H N, Nie L L, Zhang Y F, Zhao Y B, Yang X L. Chem. Eng. J., 2022, 427: 130843.
[67]
An S, Jeon E J, Han S Y, Jeon J, Lee M J, Kim S, Shin M, Cho S W. Small, 2022, 18(41): 2202729.
[68]
Li Y P, Li L, Zhang Z P, Cheng J R, Fei Y S, Lu L B. Chem. Eng. J., 2021, 420: 129736.
[69]
Kim S, Moon J M, Choi J S, Cho W K, Kang S M. Adv. Funct. Mater., 2016, 26(23): 4099.
[70]
Osman A, Lin E H, Hwang D S. Carbohydr. Polym., 2023, 299: 120172.
[71]
Zhang H, Zhao T Y, Newland B, Liu W G, Wang W, Wang W X. Prog. Polym. Sci., 2018, 78: 47.
[72]
Brubaker C E, Kissler H, Wang L J, Kaufman D B, Messersmith P B. Biomaterials, 2010, 31(3): 420.
[73]
Hu S S, Pei X B, Duan L L, Zhu Z, Liu Y H, Chen J Y, Chen T, Ji P, Wan Q B, Wang J. Nat. Commun., 2021, 12: 1689.
[74]
Mazzotta M G, Putnam A A, North M A, Wilker J J. J. Am. Chem. Soc., 2020, 142(10): 4762.
[75]
Ma C, Pang H W, Cai L P, Huang Z H, Gao Z H, Li J Z, Zhang S F. J. Clean. Prod., 2021, 308: 127309.
[76]
David B Tiu B, Delparastan P, Ney M R, Gerst M, Messersmith P B. ACS Appl. Mater. Interfaces, 2019, 11(31): 28296.
[77]
Mu Y B, Wu X, Pei D F, Wu Z L, Zhang C, Zhou D S, Wan X B. ACS Biomater. Sci. Eng., 2017, 3(12): 3133.
[78]
Wang R, Li J Z, Chen W, Xu T T, Yun S F, Xu Z, Xu Z Q, Sato T, Chi B, Xu H. Adv. Funct. Mater., 2017, 27(8): 1604894.
[79]
Gan D L, Xu T, Xing W S, Ge X, Fang L M, Wang K F, Ren F Z, Lu X. Adv. Funct. Mater., 2019, 29(1): 1805964.
[80]
Zhao N Y, Yuan W Z. Compos. B Eng., 2022, 230: 109525.
[81]
Ma Z W, Bao G Y, Li J Y. Adv. Mater., 2021, 33(24): 2007663.
[82]
Deng K, Yuk H, Guo C F, Zhao X, Wu J, Varela C E, Chen X, Roche E T. Nat. Mater. 2020, 20: 229.
[83]
Luo J, Yang J J, Zheng X R, Ke X, Chen Y T, Tan H, Li J S. Adv. Healthcare Mater., 2020, 9(4): 1901423.
[84]
Peng H T, Shek P N. Expert Rev. Med. Devices, 2010, 7(5): 639.
[85]
Mehdizadeh M, Yang J. Macromol. Biosci., 2013, 13(3): 271.
[86]
Seyednejad H, Imani M, Jamieson T, Seifalian A M. Br. J. Surg., 2008, 95(10): 1197.
[87]
Klimo P, Khalil A, Slotkin J R, Smith E R, Scott R M, Goumnerova L C. Oper. Neurosurg., 2007, 60(4): 305.
[88]
Fortelny R H, Petter-Puchner A H, Walder N, Mittermayr R, Öhlinger W, Heinze A, Redl H. Surg. Endosc., 2007, 21(10): 1781.
[89]
Chen T, Chen Y J, Rehman H U, Chen Z, Yang Z, Wang M, Li H, Liu H Z. ACS Appl. Mater. Interfaces, 2018, 10(39): 33523.
[90]
Annabi N, Rana D, Shirzaei Sani E, Portillo-Lara R, Gifford J L, Fares M M, Mithieux S M, Weiss A S. Biomaterials, 2017, 139: 229.
[91]
Guan T, Li J Y, Chen C Y, Liu Y. Adv. Sci., 2022, 9(10): 2104165.
[92]
Xu M, Khan A, Wang T J, Song Q, Han C M, Wang Q Q, Gao L L, Huang X, Li P, Huang W. ACS Appl. Bio Mater., 2019, 2(8): 3329.
[93]
Zhao X, Guo B L, Wu H, Liang Y P, Ma P X. Nat. Commun., 2018, 9: 2784.
[94]
Liang Y Q, Li Z L, Huang Y, Yu R, Guo B L. ACS Nano, 2021, 15(4): 7078.
[95]
Guo S, Ren Y K, Chang R, He Y M, Zhang D, Guan F X, Yao M H. ACS Appl. Mater. Interfaces, 2022, 14(30): 34455.
[96]
Cheng H, Shi Z, Yue K, Huang X S, Xu Y C, Gao C H, Yao Z Q, Zhang Y S, Wang J. Acta Biomater., 2021, 124: 219.
[97]
Álvarez-Lerma F, Olaechea-Astigarraga P, Palomar-Martínez M, Catalan M, Nuvials X, Gimeno R, Gracia-Arnillas M P, Seijas-Betolaza I. J. Hosp. Infect., 2018, 100(3): e204.
[98]
Arciola C R, Campoccia D, Montanaro L. Nat. Rev. Microbiol., 2018, 16(7): 397.
[99]
Long L, Fan Y Q, Yang X, Ding X K, Hu Y, Zhang G C, Xu F J. Chem. Eng. J., 2022, 444: 135426.
[100]
Lu B Y, Han X, Zou D, Luo X, Liu L, Wang J Y, Maitz M F, Yang P, Huang N, Zhao A S. Mater. Today Bio, 2022, 16: 100392.
[101]
Zhao X X, Alexander Irvine S, Agrawal A, Cao Y, Lim P Q, Tan S Y, Venkatraman S S. Acta Biomater., 2015, 26: 159.
[102]
Yuk H, Zhang T, Lin S T, Alberto Parada G, Zhao X H. Nat. Mater., 2016, 15(2): 190.
[103]
Li X, Su X L. J. Mater. Chem. B, 2018, 6(29): 4714.
[104]
Fullenkamp D E, Rivera J G, Gong Y K, Lau K H A, He L H, Varshney R, Messersmith P B. Biomaterials, 2012, 33(15): 3783.
[105]
García-Fernández L, Cui J X, Serrano C, Shafiq Z, Gropeanu R A, Miguel V S, Ramos J I, Wang M, Auernhammer G K, Ritz S, Golriz A A, Berger R, Wagner M, del Campo A. Adv. Mater., 2013, 25(4): 529.
[106]
Ryu J H, Messersmith P B, Lee H. ACS Appl. Mater. Interfaces, 2018, 10(9): 7523.
[107]
Maier G P, Rapp M V, Waite J H, Israelachvili J N, Butler A. Science, 2015, 349(6248): 628.
[108]
Statz A R, Meagher R J, Barron A E, Messersmith P B. J. Am. Chem. Soc., 2005, 127(22): 7972.
[109]
Yang S J, Zou L Y, Liu C, Zhong Q, Ma Z Y, Yang J, Ji J, Müller-Buschbaum P, Xu Z K. ACS Appl. Mater. Interfaces, 2020, 12(48): 54094.
[110]
Li J, Celiz A D, Yang J, Yang Q, Wamala I, Whyte W, Seo B R, Vasilyev N V, Vlassak J J, Suo Z, Mooney D J. Science, 2017, 357(6349): 378.
[111]
Wan X Z, Gu Z, Zhang F L, Hao D Z, Liu X, Dai B, Song Y Y, Wang S T. NPG Asia Mater., 2019, 11: 49.
[112]
Yang J W, Bai R B, Chen B H, Suo Z G. Adv. Funct. Mater., 2020, 30(2): 1901693.
[113]
Pan M F, Nguyen K C T, Yang W S, Liu X, Chen X Z, Major P W, Le L H, Zeng H B. Chem. Eng. J., 2022, 434: 134418.
[114]
Ma L, Su B H, Cheng C, Yin Z H, Qin H, Zhao J M, Sun S D, Zhao C S. J. Membr. Sci., 2014, 470: 90.
[115]
Ma L, Cheng C, Nie C X, He C, Deng J, Wang L R, Xia Y, Zhao C S. J. Mater. Chem. B, 2016, 4(19): 3203.
[116]
Fu M J, Liang Y J, Lv X, Li C N, Yang Y Y, Yuan P Y, Ding X. J. Mater. Sci. Technol., 2021, 85: 169.
[117]
Barthelat F. J. Mech. Phys. Solids, 2014, 73: 22.
[118]
Rego S J, Vale A C, Luz G M, Mano J F, Alves N M. Langmuir, 2016, 32(2): 560.
[119]
Zhang C, Wu B H, Zhou Y S, Zhou F, Liu W M, Wang Z K. Chem. Soc. Rev., 2020, 49(11): 3605.
[120]
Kim K, Kim K, Ryu J H, Lee H. Biomaterials, 2015, 52: 161.
[121]
Lim S, Park T Y, Jeon E Y, Joo K I, Cha H J. Biomaterials, 2021, 278: 121171.
[122]
Ren Y Z, Zhao X, Liang X F, Ma P X, Guo B L. Int. J. Biol. Macromol., 2017, 105: 1079.
[123]
De Koker S, Hoogenboom R, De Geest B G. Chem. Soc. Rev., 2012, 41(7): 2867.
[124]
Ye Q, Zhou F, Liu W M. Chem. Soc. Rev., 2011, 40(7): 4244.
[125]
Kaur G, Arora M, Ravi Kumar M N V. J. Pharmacol. Exp. Ther., 2019, 370(3): 529.
[126]
Macedo A S, Castro P M, Roque L, ThomÉ N G, Reis C P, Pintado M E, Fonte P. J. Control. Release, 2020, 320: 125.
[127]
Rich S I, Wood R J, Majidi C. Nat. Electron., 2018, 1(2): 102.
[128]
Li S N, Cong Y, Fu J. J. Mater. Chem. B, 2021, 9(22): 4423.
[129]
Wang X, Sun X T, Gan D L, Soubrier M, Chiang H Y, Yan L W, Li Y Q, Li J J, Yu S, Xia Y, Wang K F, Qin Q Z, Jiang X X, Han L, Pan T S, Xie C M, Lu X. Matter, 2022, 5(4): 1204.
[130]
Sun J Y, Keplinger C, Whitesides G M, Suo Z G. Adv. Mater., 2014, 26(45): 7608.
[131]
Han L, Liu K Z, Wang M H, Wang K F, Fang L M, Chen H T, Zhou J, Lu X. Adv. Funct. Mater., 2018, 28(3): 1704195.
[132]
Liao M H, Wan P B, Wen J R, Gong M, Wu X X, Wang Y G, Shi R, Zhang L Q. Adv. Funct. Mater., 2017, 27(48): 1703852.
[133]
Won H J, Ryplida B, Kim S G, Lee G, Ryu J H, Park S Y. ACS Nano, 2020, 14(7): 8409.
[134]
Di X, Hang C, Xu Y, Ma Q Y, Li F F, Sun P C, Wu G L. Mater. Chem. Front., 2020, 4(1): 189.

Funding

National Natural Science Foundation of China(52103108)
National Natural Science Foundation of China(22175037)
Key Project for Advancing Science and Technology of Fujian Province([2021]415-2021G02005)
Social Development of Instructive Program of Fujian Province(2020Y0020)
Education and research project for young and middle-aged teachers of Fujian Province(JAT210047)
PDF(3863 KB)

Accesses

Citation

Detail

Sections
Recommended

/