Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics

Jing He, Jia Chen, Hongdeng Qiu

Prog Chem ›› 2023, Vol. 35 ›› Issue (5) : 655-682.

PDF(29530 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(29530 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (5) : 655-682. DOI: 10.7536/PC221024
Review

Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics

Author information +
History +

Abstract

Carbon dots (CDs), with particle size less than 10 nm, are a new type of zero-dimensional photoluminescence nanomaterials. Due to the obvious advantages of adjustable fluorescence emission and excitation wavelength, light stability, low toxicity, good water solubility and biocompatibility, etc., CDs have been widely researched in recent years. As a treasure of ancient Chinese science, Traditional Chinese medicine (TCM) is rich in various active ingredients and plays a variety of pharmacodynamic effects, which has been used for thousands of years. TCM-CDs prepared with TCM as carbon source can create some special functions, and then may play a greater medicinal value. In this paper, the synthesis of TCM-CDs and its application in biological imaging and medical therapy are reviewed. Firstly, different synthetic methods of TCM-CDs (including hydrothermal, pyrolysis, solvothermal and microwave assisted method) are introduced in detail, and their advantages and disadvantages are compared. Subsequently, the latest research on TCM-CDs in biological imaging and medical treatment is comprehensively analyzed. This paper focuses on the application of imaging different types of cells in vitro and the distribution and uptake of TCM-CDs guided by imaging in vivo (mice, zebrafish, etc.). In addition, the intrinsic pharmacological activities of these TCM-CDs (including antibacterial, anti-inflammatory, hemostatic, antioxidant and anticancer, etc.) and their mechanisms are also discussed in order to improve and promote their clinical application. Finally, the importance of TCM-CDs research, the main problems and challenges in this fields and the future development direction are summarized and outlooked.

Contents

1 Introduction

2 Synthetic method of TCM-CDs

2.1 Hydrothermal method

2.2 Pyrolysis method

2.3 Solvothermal method

2.4 Microwave assisted method

3 Application of TCM-CDs in bioimaging

3.1 In vitro imaging

3.2 In vivo imaging

4 Application of TCM-CDs in therapeutics

4.1 Anti-bacterial

4.2 Anti-inflammatory

4.3 Hemostasis

4.4 Anti-oxidation

4.5 Anti-cancer

4.6 Other therapeutic effects

5 Conclusion and outlook

Key words

carbon dots / traditional chinese medicines / synthesis methods / bioimaging / therapeutics

Cite this article

Download Citations
Jing He , Jia Chen , Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics[J]. Progress in Chemistry. 2023, 35(5): 655-682 https://doi.org/10.7536/PC221024

References

[1]
Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126(40): 12736.
[2]
Ai L, Shi R, Yang J, Zhang K, Zhang T R, Lu S Y. Small, 2021, 17(48): 2007523.
[3]
Fatahi Z, Esfandiari N, Ranjbar Z. J. Anal. Test., 2020, 4(4): 307.
[4]
Tang Z J, Li G K, Hu Y L. Prog. Chem., 2016, 28: 1455.
(唐志姣, 李攻科, 胡玉玲. 化学进展, 2016, 28: 1455.).
[5]
Li C H, Liu Y M, Lu B, Sana U, Ren X Y, Sun Y P. Prog. Chem., 2022, 34(3): 499.
(李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 化学进展, 2022, 34(3): 499.).
[6]
Zhai Y P, Zhang B W, Shi R, Zhang S Y, Liu Y, Wang B Y, Zhang K, Waterhouse G I N, Zhang T R, Lu S Y. Adv. Energy Mater., 2022, 12(6): 2103426.
[7]
Semeniuk M, Yi Z H, Poursorkhabi V, Tjong J, Jaffer S, Lu Z H, Sain M. ACS Nano, 2019, 13(6): 6224.
[8]
Wei Y Y, Chen L, Wang J L, Yu S P, Liu X G, Yang Y Z. Prog. Chem., 2020, 32: 381.
(卫迎迎, 陈琳, 王军丽, 于世平, 刘旭光, 杨永珍. 化学进展, 2020, 32: 381.).
[9]
Hutton G A M, Martindale B C M, Reisner E. Chem. Soc. Rev., 2017, 46(20): 6111.
[10]
Xiong W, Zhao Y, Cheng J J, Zhang M L, Sun Z W, Luo J, Zhu Y F, Zhang Y X, Kong H, Qu H H. Chinese Traditional and Herbal Drugs, 2019, 50: 1388.
(熊威, 赵琰, 成金俊, 张美龄, 孙紫薇, 罗娟, 朱雅凡, 张亚雪, 孔慧, 屈会化. 中草药, 2019, 50: 1388.).
[11]
He C, E S, Yan H H, Li X J. Prog. Chem., 2022, 34: 356.
(何闯, 鄂爽, 闫鸿浩, 李晓杰. 化学进展, 2022, 34: 356.).
[12]
Chen S T, Chen C Q, Wang J, Luo F, Guo L H, Qiu B, Lin Z Y. J. Anal. Test., 2021, 5(1): 84.
[13]
Wang J L, Wang Y L, Zheng J X, Yu S P, Yang Y Z, Liu X G. Prog. Chem., 2018, 30: 1186.
(王军丽, 王亚玲, 郑静霞, 于世平, 杨永珍, 刘旭光. 化学进展, 2018, 30: 1186.).
[14]
Sharma A, Das J. J. Nanobiotechnology, 2019, 17(1): 92.
[15]
Zhang H J, Qiao X, Cai T P, Chen J, Li Z, Qiu H D. Anal. Bioanal. Chem., 2017, 409(9): 2401.
[16]
Yang Y L, Zhang H J, Chen J, Li Z, Zhao L, Qiu H D. Analyst, 2020, 145(3): 1056.
[17]
Chen J, Gong Z J, Tang W Y, Row K H, Qiu H D. Trac Trends Anal. Chem., 2021, 134: 116135.
[18]
Chen J, Yuan N, Jiang D N, Lei Q, Liu B, Tang W Y, Row K H, Qiu H D. Chin. Chem. Lett., 2021, 32(11): 3398.
[19]
Egorova M N, Tomskaya A E, Kapitonov A N, Alekseev A A, Smagulova S A. J. Struct. Chem., 2018, 59(4): 780.
[20]
Liu Y S, Zhao Y N, Zhang Y Y. Sens. Actuat. B Chem., 2014, 196: 647.
[21]
Kong L Y, Tan R X. Nat. Prod. Rep., 2015, 32(12): 1617.
[22]
Miao R, Meng Q, Wang C, Yuan W. Evid. Based Complementary Altern. Med., 2022, 2022: 8075344.
[23]
Zhang Y, Wang S N, Lu F, Zhang M L, Kong H, Cheng J J, Luo J, Zhao Y, Qu H H. J. Nanobiotechnology, 2021, 19(1): 257.
[24]
Wu D, Huang X M, Deng X, Wang K, Liu Q Y. Anal. Methods, 2013, 5(12): 3023.
[25]
Yu J, Song N, Zhang Y K, Zhong S X, Wang A J, Chen J R. Sens. Actuat. B Chem., 2015, 214: 29.
[26]
Zhao X Y, Liao S, Wang L M, Liu Q, Chen X Q. Talanta, 2019, 201: 1.
[27]
Zuo G C, Xie A M, Li J J, Su T, Pan X H, Dong W. J. Phys. Chem. C, 2017, 121(47): 26558.
[28]
Tang S Y, Chen D, Guo G Q, Li X M, Wang C X, Li T T, Wang G. Sci. Total Environ., 2022, 825: 153913.
[29]
Sun X H, He J, Yang S H, Zheng M D, Wang Y Y, Ma S, Zheng H P. J. Photochem. Photobiol. B Biol., 2017, 175: 219.
[30]
Sharma V, Tiwari P, Mobin S M. J. Mater. Chem. B, 2017, 5(45): 8904.
[31]
Humaera N A, Fahri A N, Armynah B, Tahir D. Luminescence, 2021, 36(6): 1354.
[32]
Luo W K, Zhang L L, Yang Z Y, Guo X H, Wu Y, Zhang W, Luo J K, Tang T, Wang Y. J. Nanobiotechnology, 2021, 19(1): 320.
[33]
Li D, Xu K Y, Zhao W P, Liu M F, Feng R, Li D Q, Bai J, Du W L. Front. Pharmacol., 2022, 13: 815479.
[34]
Wu X C, Liang W H, Cai C X. Prog. Chem., 2021, 33: 1059.
(吴星辰, 梁文慧, 蔡称心. 化学进展, 2021, 33: 1059.).
[35]
Yan F Y, Zhou Y, Wang M, Dai L F, Zhou X G, Chen L. Prog. Chem., 2014, 26: 61.
(颜范勇, 邹宇, 王猛, 代林枫, 周旭光, 陈莉. 化学进展, 2014, 26: 61.).
[36]
Liu Y S, Li W, Wu P, Liu S X. Prog. Chem., 2018, 30: 349.
(刘禹杉, 李伟, 吴鹏, 刘守新. 化学进展, 2018, 30: 349.).
[37]
Rong M C, Wang D R, Li Y Y, Zhang Y Z, Huang H Y, Liu R F, Deng X Z. J. Anal. Test., 2021, 5(1): 51.
[38]
Li C L, Ou C M, Huang C C, Wu W C, Chen Y P, Lin T E, Ho L C, Wang C W, Shih C C, Zhou H C, Lee Y C, Tzeng W F, Chiou T J, Chu S T, Cang J S, Chang H T. J. Mater. Chem. B, 2014, 2(28): 4564.
[39]
Mewada A, Pandey S, Shinde S, Mishra N, Oza G, Thakur M, Sharon M, Sharon M. Mater. Sci. Eng. C, 2013, 33(5): 2914.
[40]
Zhao S J, Lan M H, Zhu X Y, Xue H T, Ng T W, Meng X M, Lee C S, Wang P F, Zhang W J. ACS Appl. Mater. Interfaces, 2015, 7(31): 17054.
[41]
Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H, Zhang K, Sun H C, Wang H Y, Yang B. Angew. Chem. Int. Ed., 2013, 52(14): 3953.
[42]
Bhattacharyya S, Ehrat F, Urban P, Teves R, Wyrwich R, Döblinger M, Feldmann J, Urban A S, Stolarczyk J K. Nat. Commun., 2017, 8: 1401.
[43]
Kwon W, Lee G, Do S, Joo T, Rhee S W. Small, 2014, 10(3): 506.
[44]
Li Y J, Li W, Yang X, Kang Y Y, Zhang H R, Liu Y L, Lei B F. ACS Appl. Nano Mater., 2021, 4(1): 113.
[45]
Yuan F L, Wang Z B, Li X H, Li Y C, Tan Z A, Fan L Z, Yang S H. Adv. Mater., 2017, 29(3): 1604436.
[46]
Shen Y L, Wu H Y, Wu W H, Zhou L, Dai Z F, Dong S P. Mater. Express, 2020, 10(7): 1135.
[47]
Raveendran V, Suresh Babu A R, Renuka N K. RSC Adv., 2019, 9(21): 12070.
[48]
Xu H, Yang X P, Li G, Zhao C, Liao X J. J. Agric. Food Chem., 2015, 63(30): 6707.
[49]
Alam A M, Park B Y, Ghouri Z K, Park M, Kim H Y. Green Chem., 2015, 17(7): 3791.
[50]
Atchudan R, Edison T N J I, Aseer K R, Perumal S, Lee Y R. Colloids Surf. B Biointerfaces, 2018, 169: 321.
[51]
Huang Q Q, Bao Q Q, Wu C Y, Hu M R, Chen Y N, Wang L, Chen W D. J. Pharm. Anal., 2022, 12(1): 104.
[52]
Wang S, Wu S H, Fang W L, Guo X F, Wang H. Dyes Pigments, 2019, 164: 7.
[53]
Xue M Y, Zou M B, Zhao J J, Zhan Z H, Zhao S L. J. Mater. Chem. B, 2015, 3(33): 6783.
[54]
Xue M Y, Zhan Z H, Zou M B, Zhang L L, Zhao S L. New J. Chem., 2016, 40(2): 1698.
[55]
Zhu L L, Yin Y J, Wang C F, Chen S. J. Mater. Chem. C, 2013, 1(32): 4925.
[56]
Praneerad J, Neungnoraj K, In I, Paoprasert P. Key Eng. Mater., 2019, 803: 115.
[57]
Wei X J, Li L, Liu J L, Yu L D, Li H B, Cheng F, Yi X T, He J M, Li B S. ACS Appl. Mater. Interfaces, 2019, 11(10): 9832.
[58]
Aji M P, Susanto, Wiguna P A, Sulhadi. J. Theor. Appl. Phys., 2017, 11(2): 119.
[59]
Chen Y Q, Lian H Z, Wei Y, He X, Chen Y, Wang B, Zeng Q G, Lin J. Nanoscale, 2018, 10(14): 6734.
[60]
Wang N, Wang Y, Guo T, Yang T, Chen M, Wang J. Biosens. Bioelectron., 2016, 85: 68.
[61]
Moreira V A, Toito Suarez W, de Oliveira Krambeck Franco M, Gambarra Neto F F. Anal. Methods, 2018, 10(37): 4570.
[62]
Sim L C, Wong J L, Hak C H, Tai J Y, Leong K H, Saravanan P. Beilstein J. Nanotechnol., 2018, 9: 353.
[63]
Qiu Y, Gao D, Yin H G, Zhang K L, Zeng J, Wang L J, Xia L, Zhou K, Xia Z N, Fu Q F. Sens. Actuat. B Chem., 2020, 324: 128722.
[64]
Shi Y P, Liu J J, Zhang Y, Bao J F, Cheng J L, Yi C Q. Chin. Chem. Lett., 2021, 32(10): 3189.
[65]
Chatzimitakos T, Kasouni A, Sygellou L, Leonardos I, Troganis A, Stalikas C. Sens. Actuat. B Chem., 2018, 267: 494.
[66]
Architha N, Ragupathi M, Shobana C, Selvankumar T, Kumar P, Lee Y S, Kalai Selvan R. Environ. Res., 2021, 199: 111263.
[67]
Feng J, Wang W J, Hai X, Yu Y L, Wang J H. J. Mater. Chem. B, 2016, 4(3): 387.
[68]
Isnaeni, Rahmawati I, Intan R, Zakaria M. J. Phys.: Conf. Ser., 2018, 985: 012004.
[69]
Li L L, Li L Y, Chen C P, Cui F L. Inorg. Chem. Commun., 2017, 86: 227.
[70]
Tejwan N, Sharma A, Thakur S, Das J. Inorg. Chem. Commun., 2021, 134: 108985.
[71]
de Medeiros T V, Manioudakis J, Noun F, Macairan J R, Victoria F, Naccache R. J. Mater. Chem. C, 2019, 7(24): 7175.
[72]
Singh R K, Kumar R, Singh D P, Savu R, Moshkalev S A. Mater. Today Chem., 2019, 12: 282.
[73]
Lu M C, Duan Y X, Song Y H, Tan J S, Zhou L. J. Mol. Liq., 2018, 269: 766.
[74]
Sahu S, Behera B, Maiti T K, Mohapatra S. Chem. Commun., 2012, 48(70): 8835.
[75]
Shahid S, Mohiyuddin S, Packirisamy G. J. Nanosci. Nanotechnol., 2020, 20(10): 6305.
[76]
Atchudan R, Edison T N J I, Lee Y R. J. Colloid Interface Sci., 2016, 482: 8.
[77]
Atchudan R, Edison T N J I, Sethuraman M G, Lee Y R. Appl. Surf. Sci., 2016, 384: 432.
[78]
Mazrad Z A I, Kang E B, In I, Park S Y. Luminescence, 2018, 33(1): 40.
[79]
Jeong C J, Roy A K, Kim S H, Lee J E, Jeong J H, In I, Park S Y. Nanoscale, 2014, 6(24): 15196.
[80]
Sachdev A, Gopinath P. Anal., 2015, 140(12): 4260.
[81]
Chai C F, Qiao X H, Zheng L L, Duan H B, Bian W, Choi M M F. Fuller. Nanotub. Carbon Nanostructures, 2022, 30(5): 534.
[82]
Raveendran V, Kizhakayil R N. ACS Omega, 2021, 6(36): 23475.
[83]
Li L S, Jiao X Y, Zhang Y, Cheng C, Huang K, Xu L. Sens. Actuat. B Chem., 2018, 263: 426.
[84]
Wan Y Y, Wang M, Zhang K L, Fu Q F, Gao M J, Wang L J, Xia Z N, Gao D. Microchem. J., 2019, 148: 385.
[85]
Liu M J, Hao X L, Dai S J, Wang S Y, Wang Y, Zhang H. Chem. Res. Chin. Univ., 2022, 39: 234.
[86]
Feng X. Jiang Y, Zhao J. RSC Adv., 2015, 5: 31250.
[87]
Ma H P, Sun C C, Xue G, Wu G L, Zhang X H, Han X, Qi X H, Lv X, Sun H J, Zhang J B. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2019, 213: 281.
[88]
Xue M Y, Zhao J J, Zhan Z H, Zhao S L, Lan C Q, Ye F G, Liang H. Nanoscale, 2018, 10(38): 18124.
[89]
Yao H, Li J, Song Y B, Zhao H, Wei Z H, Li X Y, Jin Y R, Yang B, Jiang J L. Int. J. Nanomed., 2018, 13: 6249.
[90]
Atchudan R, Edison T N J I, Aseer K R, Perumal S, Karthik N, Lee Y R. Biosens. Bioelectron., 2018, 99: 303.
[91]
Thota S P, Thota S M, Srimadh Bhagavatham S, Sai Manoj K, Sai Muthukumar V S, Venketesh S, Vadlani P V, Belliraj S K. IET Nanobiotechnol., 2018, 12(2): 127.
[92]
Bhatt S, Bhatt M, Kumar A, Vyas G, Gajaria T, Paul P. Colloids Surf. B Biointerfaces, 2018, 167: 126.
[93]
Durrani S, Zhang J, Yang Z, Pang A P, Zeng J, Sayed S M, Khan A, Zhang Y Q, Wu F G, Lin F M. Anal. Chim. Acta, 2022, 1202: 339672.
[94]
Lin R, Cheng S S, Tan M Q. Food Funct., 2022, 13(4): 2098.
[95]
Yang S T, Cao L, Luo P G, Lu F S, Wang X, Wang H F, Meziani M J, Liu Y F, Qi G, Sun Y P. J. Am. Chem. Soc., 2009, 131(32): 11308.
[96]
Luo P G, Sahu S, Yang S T, Sonkar S K, Wang J P, Wang H F, LeCroy G E, Cao L, Sun Y P. J. Mater. Chem. B, 2013, 1(16): 2116.
[97]
Liu J J, Geng Y J, Li D W, Yao H, Huo Z P, Li Y F, Zhang K, Zhu S J, Wei H T, Xu W Q, Jiang J L, Yang B. Adv. Mater., 2020, 32(17): 1906641.
[98]
Zheng X D, Qin K H, He L P, Ding Y F, Luo Q, Zhang C T, Cui X M, Tan Y, Li L N, Wei Y L. Analyst, 2021, 146(3): 911.
[99]
Su Q, Gan L L, Liu J, Yang X M. Anal. Biochem., 2020, 589: 113476.
[100]
Zhang J H, Niu A P, Li J, Fu J W, Xu Q, Pei D S. Sci. Rep., 2016, 6: 37860.
[101]
Phan L M T, Cho S. Bioinorg. Chem. Appl., 2022, 2022: 9303703.
[102]
Sun Y N, Zhang M, Bhandari B, Yang C H. Food Rev. Int., 2022, 38(7): 1513.
[103]
Dong X L, Liang W X, Meziani M J, Sun Y P, Yang L J. Theranostics, 2020, 10(2): 671.
[104]
Wu Y Y, Li C, van der Mei H C, Busscher H J, Ren Y J. Antibiotics, 2021, 10(6): 623.
[105]
Ghirardello M, Ramos-Soriano J, Galan M C. Nanomaterials, 2021, 11(8): 1877.
[106]
Venkateswarlu S, Viswanath B, Reddy A S, Yoon M. Sens. Actuat. B Chem., 2018, 258: 172.
[107]
Tejwan N, Kundu M, Sharma A, Das J, Sil P C. Research Square,Preprint, (2020-05-19). DOI:10.21203/rs.3.rs-28922/v1.
[108]
Kong B, Yang T, Cheng F, Qian Y, Li C M, Zhan L, Li Y F, Zou H Y, Huang C Z. J. Colloid Interface Sci., 2022, 611: 545.
[109]
Wang S N, Zhang Y, Kong H, Zhang M L, Cheng J J, Wang X K, Lu F, Qu H H, Zhao Y. Nanomedicine, 2019, 14(22): 2925.
[110]
Wang X K, Zhang Y, Kong H, Cheng J J, Zhang M L, Sun Z W, Wang S N, Liu J X, Qu H H, Zhao Y. Artif. Cells Nanomed. Biotechnol., 2020, 48(1): 68.
[111]
Zhang M L, Cheng J J, Hu J, Luo J, Zhang Y, Lu F, Kong H, Qu H H, Zhao Y. J. Nanobiotechnology, 2021, 19(1): 105.
[112]
Zhao Y S, Zhang Y, Kong H, Cheng G L, Qu H H, Zhao Y. Int. J. Nanomed., 2022, 17: 1.
[113]
Wu J S, Zhang M L, Cheng J J, Zhang Y, Luo J, Liu Y H, Kong H, Qu H H, Zhao Y. Int. J. Nanomed., 2020, 15: 4139.
[114]
Zhao Y S, Li W Y, Cao T Y, Zhao Y, Qu H H, Guid. J.. Tradit. Chin. Med. Pharm, 2021, 27: 56.
(赵玉升, 李伟洋, 曹天佑, 赵琰, 屈会化. 中医药导报, 2021, 27: 56.).
[115]
Guo Y M, Zhang L F, Cao F P, Leng Y M. Sci. Rep., 2016, 6: 35795.
[116]
Zhang M, Zhao Y, Cheng J, Liu X, Wang Y, Yan X, Zhang Y, Lu F, Wang Q, Qu H. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46: 1562.
[117]
Wang Y Z, Kong H, Liu X M, Luo J, Xiong W, Zhu Y F, Zhang Y X, Zhang Y H, Zhao Y, Qu H H. J. Biomed. Nanotechnol., 2018, 14(9): 1635.
[118]
Sun Z W, Lu F, Cheng J J, Zhang M L, Zhang Y, Xiong W, Zhao Y, Qu H H. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup3): 308.
[119]
Yan X, Zhao Y, Luo J, Xiong W, Liu X M, Cheng J J, Wang Y Z, Zhang M L, Qu H H. J. Nanobiotechnology, 2017, 15(1): 60.
[120]
Luo J, Kong H, Zhang M L, Cheng J J, Sun Z W, Xiong W, Zhu Y F, Zhao Y, Qu H H. J. Biomed. Nanotechnol., 2019, 15(1): 151.
[121]
Liu X M, Wang Y Z, Yan X, Zhang M L, Zhang Y, Cheng J J, Lu F, Qu H H, Wang Q G, Zhao Y. Nanomedicine, 2018, 13(4): 391.
[122]
Luo J, Zhang M L, Cheng J J, Wu S H, Xiong W, Kong H, Zhao Y, Qu H H. RSC Adv., 2018, 8(66): 37707.
[123]
Chen Z, Ye S Y, Yang Y, Li Z Y. Pharm. Biol., 2019, 57(1): 498.
[124]
Cheng J J, Zhang M L, Sun Z W, Lu F, Xiong W, Luo J, Kong H, Wang Q G, Qu H H, Zhao Y. Nanomedicine, 2019, 14(4): 431.
[125]
Zhao Y, Zhang Y, Liu X M, Kong H, Wang Y Z, Qin G F, Cao P, Song X X, Yan X, Wang Q G, Qu H H. Sci. Rep., 2017, 7: 4452.
[126]
Wang W H, Hsuan K Y, Chu L Y, Lee C Y, Tyan Y C, Chen Z S, Tsai W C. Evid. Based Complementary Altern. Med., 2017, 2017: 1.
[127]
Li Y J, Tang Z H, Pan Z Y, Wang R G, Wang X, Zhao P, Liu M, Zhu Y X, Liu C, Wang W C, Liang Q, Gao J, Yu Y C, Li Z Y, Lei B F, Sun J. ACS Nano, 2022, 16(3): 4357.
[128]
Arul V, Sethuraman M G. Opt. Mater., 2018, 78: 181.
[129]
Liu Y H, Zhang M L, Cheng J J, Zhang Y, Kong H, Zhao Y, Qu H H. Molecules, 2021, 26(6): 1512.
[130]
Zhang M L, Cheng J J, Zhang Y, Kong H, Wang S N, Luo J, Qu H H, Zhao Y. Nanomedicine, 2020, 15(9): 851.
[131]
Sun Z W, Lu F, Cheng J J, Zhang M L, Zhu Y F, Zhang Y X, Kong H, Qu H H, Zhao Y. J. Biomed. Nanotechnol., 2018, 14(12): 2146.
[132]
Xu Y L, Wang B Y, Zhang M M, Zhang J X, Li Y D, Jia P J, Zhang H, Duan L L, Li Y, Li Y T, Qu X L, Wang S H, Liu D H, Zhou W P, Zhao H Z, Zhang H C, Chen L X, An X L, Lu S Y, Zhang S J. Adv. Mater., 2022, 34(19): 2200905.
[133]
Kong H, Zhao Y S, Cao P, Luo J, Liu Y H, Qu H H, Zhang Y, Zhao Y. J. Biomed. Nanotechnol., 2021, 17(12): 2485.
[134]
Liu Y Y, Yu N Y, Fang W D, Tan Q G, Ji R, Yang L Y, Wei S, Zhang X W, Miao A J. Nat. Commun., 2021, 12: 812.

Funding

CAS “Light of West China” Program(xbzg-zdsys-202008)
Youth Innovation Promotion Association CAS(2021420)
PDF(29530 KB)

Accesses

Citation

Detail

Sections
Recommended

/