Intrinsically Thermal Conductive Polymers: Heat Conduction Mechanism, Structure & Performances and Applications

Wenying Zhou, Fang Wang, Yating Yang, Yun Wang, Yingying Zhao, Liangqing Zhang

Prog Chem ›› 2023, Vol. 35 ›› Issue (7) : 1106-1122.

PDF(10058 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(10058 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (7) : 1106-1122. DOI: 10.7536/PC221102
Review

Intrinsically Thermal Conductive Polymers: Heat Conduction Mechanism, Structure & Performances and Applications

Author information +
History +

Abstract

Heat dissipation has emerged as a critical challenge and technical bottleneck which is increasingly restricting the continuous miniaturization of large-power and ultrahigh frequency microelectronic devices and high-voltage electrical insulation equipment. High-performance heat conductive materials are highly desirable for effective thermal management. Compared with conventional heat conductive polymeric composites, the intrinsically thermal conductive polymers have gained extensive research and attention from domestic and overseas owing to their integrated excellent overall properties like high thermal conductivity and high dielectric breakdown strength, excellent flexibility, lightweight and high strength, etc. The present paper first discusses the heat conduction mechanisms in intrinsic polymers, and then systematically analyzes and reviews the following factors influencing phonon transport and polymers’ thermal conductivity: the structures from monomers and molecular chains with diverse scales, crystallinity, orientation, inter-chain interactions, crosslinking, structure defects, as well as temperature, pressure, environmental factors, etc. Further, the strategies to prepare high thermal conductivity polymers have been summarized. Finally, this paper sums up the existing questions and challenges ahead in the study of thermal conductive polymers, and points out their future research direction and prospects potential important applications in various industrial occasions.

Contents

1 Introduction

2 Thermal conduction mechanisms in polymers

3 Polymers’structure and thermal conductivity

3.1 Near-range structures

3.2 Long-range structures

3.3 Aggregation structure

4 Other factors affecting TC

4.1 Density and specific heat capacity

4.2 Electrical conductivity

4.3 Speed of sound

4.4 Temperature

4.5 Pressure

4.6 Environmental factors

5 Strategies for the preparation of ITCP

5.1 Top-down methods

5.2 Bottom-up methods

6 Conclusion and Prospects

Key words

thermally conductive polymers / phonon transport / ordered structure / orientation / hydrogen bond

Cite this article

Download Citations
Wenying Zhou , Fang Wang , Yating Yang , et al . Intrinsically Thermal Conductive Polymers: Heat Conduction Mechanism, Structure & Performances and Applications[J]. Progress in Chemistry. 2023, 35(7): 1106-1122 https://doi.org/10.7536/PC221102

References

[1]
Zhou W Y, Dang Z M, Ding X W. Heat conductive polymer composites. Beijing: National Defense Industry Press, 2017. 72.
(周文英, 党智敏, 丁小卫. 聚合物基导热复合材料. 北京: 国防工业出版社, 2017. 72.).
[2]
Liu Y R, Xu Y F. Acta. Physica. Sinic., 2022, 71(2): 023601.
(刘裕芮, 许艳菲. 物理学报, 2022, 71(2): 023601.).
[3]
Pan D K, Zong Z C, Yang N. Acta. Physica. Sinic., 2022, 71(08): 284.
(潘东楷, 宗志成, 杨诺. 物理学报, 2022, 71(08): 284.).
[4]
Xu X F, Zhou J, Chen J. Adv. Funct. Mater., 2020, 30(8): 1904704.
[5]
Chen H Y, Ginzburg V V, Yang J, Yang Y F, Liu W, Huang Y, Du L B, Chen B. Prog. Polym. Sci., 2016, 59: 41.
[6]
Guo Y Q, Ruan K P, Shi X T, Yang X T, Gu J W. Compos. Sci. Technol., 2020, 193: 108134.
[7]
Huang C L, Qian X, Yang R G. Mat. Sci. Eng. R., 2018, 132: 1.
[8]
Lin Y, Huang X Y, Chen J, Jiang P K. High Volt., 2017, 2(3): 139.
[9]
Zhan H F, Nie Y H, Chen Y N, Bell J M, Gu Y T. Adv. Funct. Mater., 2020, 30(8): 1903841.
[10]
Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D. Prog. Polym. Sci., 2016, 61: 1.
[11]
Chaudhry A U, Mabrouk A N, Abdala A. Sci. Technol. Adv. Mater., 2020, 21(1): 737.
[12]
Henry A. Annu. Rev. Heat Transf., 2014, 17: 485.
[13]
Zhou W Y, Wang Y, Cao G Z, Cao D, Li T, Zhang X L. Acta Mater. Compos. Sin., 2021, 38(7)2038.
(周文英, 王蕴, 曹国政, 曹丹, 李婷, 张祥林. 复合材料学报, 2021, 38(7) 2038.).
[14]
Wei X F, Wang Z, Tian Z T, Luo T F. J. Heat Transf., 2021, 143(7): 072101.
[15]
Liao Q W, Zeng L P, Liu Z C, Liu W. Sci. Rep., 2016, 6: 34999.
[16]
Hong Y, Goh M. Polymers, 2021, 13(8): 1302.
[17]
Ohki Y. IEEE Electr. Insul. Mag., 2010, 26(1): 48.
[18]
Ruan K P, Zhong X, Shi X T, Dang J J, Gu J W. Mater. Today Phys., 2021, 20: 100456
[19]
Xie X, Yang K X, Li D Y, Tsai T H, Shin J, Braun P V, Cahill D G. Phys. Rev. B, 2017, 95(3): 035406.
[20]
Park M, Kang D G, Ko H, Rim M, Tran D T, Park S, Kang M J, Kim T W, Kim N, Jeong K U. Mater. Horiz., 2020, 7(10): 2635.
[21]
Tan F L, Han S, Peng D L, Wang H L, Yang J, Zhao P, Ye X J, Dong X, Zheng Y Y, Zheng N, Gong L, Liang C L, Frese N, Gölzhäuser A, Qi H Y, Chen S S, Liu W, Zheng Z K. J. Am. Chem. Soc., 2021, 143(10): 3927.
[22]
Luo D C, Huang C L, Huang Z. J. Heat Transf., 2018, 140(3): 031302.
[23]
Fan L H, Xi F Q, Wang X Y, Xuan J, Jiao K. J. Electrochem. Soc., 2019, 166(8): F511.
[24]
Yu S, Park C, Hong S M, Koo C M. Thermochimica Acta, 2014, 583: 67.
[25]
Li S H, Yu X X, Bao H, Yang N. J. Phys. Chem. C, 2018, 122(24): 13140.
[26]
Kisiel M, Mossety-Leszczak B. Eur. Polym. J., 2020, 124: 109507.
[27]
Ota S, Harada M. J. Appl. Polym. Sci., 2021, 138(19): 50367.
[28]
Islam A M, Lim H, You N H, Ahn S, Goh M, Hahn J R, Yeo H, Jang S G. ACS Macro Lett., 2018, 7(10): 1180.
[29]
Kim Y, Yeo H, You N H, Jang S G, Ahn S, Jeong K U, Lee S H, Goh M. Polym. Chem., 2017, 8(18): 2806.
[30]
Tonpheng B, Yu J C, Andersson O. Phys. Chem. Chem. Phys., 2011, 13(33): 15047.
[31]
Xu W X, Liang X A, Xu X H, Zhu Y. Acta. Physica. Sinic, 2020, 69(19): 261.
(徐文雪, 梁新刚, 徐向华, 祝渊. 物理学报, 2020, 69(19): 261.).
[32]
Lv G X, Jensen E, Evans C M, Cahill D G. ACS Appl. Polym. Mater., 2021, 3(9): 4430.
[33]
Xiong X, Yang M, Liu C L, Li X B, Tang D W. J. Appl. Phys., 2017, 122(3): 035104.
[34]
Rashidi V, Coyle E J, Sebeck K, Kieffer J, Pipe K P. J. Phys. Chem. B, 2017, 121(17): 4600.
[35]
Shen S, Henry A, Tong J, Zheng R T, Chen G. Nat. Nanotechnol., 2010, 5(4): 251.
[36]
Wei X F, Huang Z H, Koch S, Zamengo M, Deng Y C, Minus M L, Morikawa J, Guo R L, Luo T F. ACS Appl. Polym. Mater., 2021, 3(6): 2979.
[37]
Xu Y F, Wang X X, Zhou J W, Song B, Jiang Z, Lee E M Y, Huberman S, Gleason K K, Chen G. Sci. Adv., 2018, 4(3): eaar3031.
[38]
Ma H, O'Donnel E, Tian Z T. Nanoscale, 2018, 10(29): 13924.
[39]
Zhang T, Luo T F. J. Phys. Chem. B, 2016, 120(4): 803.
[40]
Singh V, Bougher T L, Weathers A, Cai Y, Bi K D, Pettes M T, McMenamin S A, Lv W, Resler D P, Gattuso T R, Altman D H, Sandhage K H, Shi L, Henry A, Cola B A. Nat. Nanotechnol., 2014, 9(5): 384.
[41]
Ma H, Tian Z T. J. Mater. Res., 2019, 34(1): 126.
[42]
Zhang T, Wu X F, Luo T F. J. Phys. Chem. C, 2014, 118(36): 21148.
[43]
Liu J, Yang R G. Phys. Rev. B, 2012, 86(10): 104307.
[44]
Kawagoe Y, Surblys D, Kikugawa G, Ohara T. AIP Adv., 2019, 9(2): 025302.
[45]
Naghizadeh J, Ueberreiter K. Kolloid Zeitschrift Und Zeitschrift Für Polym., 1972, 250(10): 932.
[46]
Zhao J H, Jiang J W, Wei N, Zhang Y C, Rabczuk T. J. Appl. Phys., 2013, 113(18): 184304.
[47]
Hansen D, Kantayya R C, Ho C C. Polym. Eng. Sci., 1966, 6(3): 260.
[48]
Lv W, Henry A. Appl. Phys. Lett., 2016, 108(18): 181905.
[49]
Henry A, Chen G. Phys. Rev. Lett., 2008, 101(23): 235502.
[50]
Kiessling A, Simavilla D N, Vogiatzis G G, Venerus D C. Polymer, 2021, 228: 123881.
[51]
Duan X H, Li Z H, Liu J, Chen G, Li X B. J. Appl. Phys., 2019, 125(16): 164303.
[52]
Subramanyan H, Zhang W Y, He J X, Kim K, Li X B, Liu J. J. Appl. Phys., 2019, 125(9): 095104.
[53]
Qian X, Zhou J W, Chen G. Nat. Mater., 2021, 20(9): 1188.
[54]
Li P F, Yang S, Zhang T, Shrestha R, Hippalgaonkar K, Luo T F, Zhang X, Shen S. Sci. Rep., 2016, 6: 21452.
[55]
Dong L, Xi Q, Chen D S, Guo J, Nakayama T, Li Y Y, Liang Z Q, Zhou J, Xu X F, Li B W. Natl Sci Rev, 2018, 5(4): 500.
[56]
Liu J, Ju S H, Ding Y F, Yang R G. Appl. Phys. Lett., 2014, 104(15): 153110.
[57]
Allen P B, Feldman J L, Fabian J, Wooten F. Philos. Mag. Part B., 1999, 79(11): 1715.
[58]
Choy C L, Wong Y W, Yang G W, Kanamoto T. J. Polym. Sci. B Polym. Phys., 1999, 37(23): 3359.
[59]
Lando J B, Olf H G, Peterlin A. J. Polym. Sci. A-1 Polym. Chem., 1966, 4(4): 941.
[60]
Kommandur S, Yee S K. J. Polym. Sci. B Polym. Phys., 2017, 55(15): 1160.
[61]
Cao B Y, Li Y W, Kong J, Chen H, Xu Y, Yung K L, Cai A. Polymer, 2011, 52(8): 1711.
[62]
Zhang Y Z, Lei C X, Wu K, Fu Q. Adv. Sci., 2021, 8(14): 2004821.
[63]
Guo Y T, Leung S N. AIP Adv., 2018, 8(4): 045126.
[64]
Liu J, Yang R G. Phys. Rev. B, 2010, 81(17): 174122.
[65]
He J X, Kim K, Wang Y C, Liu J. Appl. Phys. Lett., 2018, 112(5): 051907.
[66]
Pan X L, Schenning A H P J, Shen L H, Bastiaansen C W M. Macromolecules, 2020, 53(13): 5599.
[67]
Li Z, An L, Khuje S, Tan J Y, Hu Y, Huang Y L, Petit D, Faghihi D, Yu J, Ren S Q. Sci. Adv., 2021, 7(40): eabi7410.
[68]
Shrestha R, Li P F, Chatterjee B, Zheng T, Wu X F, Liu Z Y, Luo T F, Choi S, Hippalgaonkar K, de Boer M P, Shen S. Nat. Commun., 2018, 9: 1664.
[69]
Kunitski M, Eicke N, Huber P, Köhler J, Zeller S, Voigtsberger J, Schlott N, Henrichs K, Sann H, Trinter F, Schmidt L P H, Kalinin A, Schöffler M S, Jahnke T, Lein M, Dörner R. Nat. Commun., 2019, 10: 1.
[70]
Zhang R C, Huang Z H, Sun D, Ji D H, Zhong M L, Zang D M, Xu J Z, Wan Y Z, Lu A. Polymer, 2018, 154: 42.
[71]
Ohara T, Chia Yuan T, Torii D, Kikugawa G, Kosugi N. J. Chem. Phys., 2011, 135(3): 034507.
[72]
Zhang L, Ruesch M, Zhang X L, Bai Z T, Liu L. RSC Adv., 2015, 5(107): 87981.
[73]
Shanker A, Li C, Kim G H, Gidley D, Pipe K P, Kim J. Sci. Adv., 2017, 3(7): e1700342.
[74]
Lee J, Kim Y, Joshi S R, Kwon M S, Kim G H. Polym. Chem., 2021, 12(7): 975.
[75]
Mehra N, Li Y F, Zhu J H. J. Phys. Chem. C, 2018, 122(19): 10327.
[76]
Li Y, Pan P, Liu C, Zhou W Y, Li C G, Gong C D, Li H L, Zhang L, Song H. J. Polym. Eng., 2020, 40(7): 573.
[77]
Li C G, Li Y, Gong C D, Ruan K P, Zhong X, Pan P, Liu C, Gu J W, Shi X T. J. Appl. Polym. Sci., 2021, 138(6): 49791.
[78]
Xie X, Li D Y, Tsai T H, Liu J, Braun P V, Cahill D G. Macromolecules, 2016, 49(3): 972.
[79]
Kim G H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P. Nat. Mater., 2015, 14(3): 295.
[80]
Mathur V, Sharma K. Heat Mass Transf., 2016, 52(12): 2901.
[81]
Hummel P, Lechner A M, Herrmann K, Biehl P, Rössel C, Wiedenhöft L, Schacher F H, Retsch M. Macromolecules, 2020, 53(13): 5528.
[82]
Zheng H T, Xu G J, Wu K, Feng L, Zhang R G, Bao Y L, Wang H, Wang K X, Qu Z C, Shi J. J. Phys. Chem. C, 2021, 125(39): 21580.
[83]
Wei X F, Zhang T, Luo T F. Phys. Chem. Chem. Phys., 2016, 18(47): 32146.
[84]
Eiermann K, Hellwege K X. J. Polym. Sci., 1962, 57(165): 99.
[85]
Xi Q, Zhong J X, He J X, Xu X F, Nakayama T, Wang Y Y, Liu J, Zhou J, Li B W. Chin. Phys. Lett., 2020, 37(10): 104401.
[86]
Zhou J, Xi Q, He J X, Xu X F, Nakayama T, Wang Y Y, Liu J. Phys. Rev. Materials, 2020, 4: 015601.
[87]
Liu J, Xu Z L, Cheng Z, Xu S, Wang X W. ACS Appl. Mater. Interfaces, 2015, 7(49): 27279.
[88]
dos Santos W N, de Sousa J A, Gregorio R. Polym. Test., 2013, 32(5): 987.
[89]
Hsieh W P, Losego M D, Braun P V, Shenogin S, Keblinski P, Cahill D G. Phys. Rev. B, 2011, 83(17): 174205.
[90]
Yamanaka A, Izumi Y, Kitagawa T, Terada T, Sugihara H, Hirahata H, Ema K, Fujishiro H, Nishijima S. J. Appl. Polym. Sci., 2006, 101(4): 2619.
[91]
Tomlinson J N, Kline D E, Sauer J A. Polym. Eng. Sci., 1965, 5(1): 44.
[92]
Chien H C, Peng W T, Chiu T H, Wu P H, Liu Y J, Tu C W, Wang C L, Lu M C. ACS Nano, 2020, 14(3): 2939.
[93]
Dinpajooh M, Nitzan A. J. Chem. Phys., 2020, 153(16): 164903.
[94]
Kang D G, Park M, Kim D Y, Goh M, Kim N, Jeong K U. ACS Appl. Mater. Interfaces, 2016, 8(44): 30492.
[95]
Huang Y F, Wang Z G, Yu W C, Ren Y, Lei J, Xu J Z, Li Z M. Polymer, 2019, 180: 121760.
[96]
Feng X H, Liu G Q, Xu S, Lin H, Wang X W. Polymer, 2013, 54(7): 1887.
[97]
Wang X J, Ho V, Segalman R A, Cahill D G. Macromolecules, 2013, 46(12): 4937.
[98]
Ma J, Zhang Q, Mayo A, Ni Z H, Yi H, Chen Y F, Mu R, Bellan L M, Li D Y. Nanoscale, 2015, 7(40): 16899.
[99]
Lu C H, Chiang S W, Du H D, Li J, Gan L, Zhang X, Chu X D, Yao Y W, Li B H, Kang F Y. Polymer, 2017, 115: 52.
[100]
Yoon D, Lee H, Kim T, Song Y, Lee T, Lee J, Hun Seol J. Eur. Polym. J., 2023, 184: 111775.
[101]
Deng S C, Yuan J L, Lin Y L, Yu X X, Ma D K, Huang Y W, Ji R C, Zhang G Z, Yang N. Nano Energy, 2021, 82: 105749.
[102]
Mu L W, Ji T, Chen L, Mehra N, Shi Y J, Zhu J H. ACS Appl. Mater. Interfaces, 2016, 8(42): 29080.
[103]
Kato T, Nagahara T, Agari Y, Ochi M. J. Polym. Sci. B Polym. Phys., 2005, 43(24): 3591.
[104]
Ku K, Choe S, Yeo H. Mol. Syst. Des. Eng., 2022, 7(5): 520.
[105]
Harada M, Ochi M, Tobita M, Kimura T, Ishigaki T, Shimoyama N, Aoki H. J. Polym. Sci. B Polym. Phys., 2003, 41(14): 1739.

Funding

National Natural Science Foundation of China(52277028)
National Natural Science Foundation of China(51577154)
Natural Science Basic Research Plan in Shaanxi Province of China(2022-JM186)
Natural Science Basic Research Plan in Shaanxi Province of China(2021JQ-566)
Scientific Research Program Funded by Shaanxi Provincial Education Department(21JK0756)
PDF(10058 KB)

Accesses

Citation

Detail

Sections
Recommended

/