Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells

Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng

Prog Chem ›› 2023, Vol. 35 ›› Issue (5) : 794-806.

PDF(8403 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(8403 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (5) : 794-806. DOI: 10.7536/PC221104
Review

Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells

Author information +
History +

Abstract

Solid oxide fuel cells (SOFCs) are power generation devices with high efficiency and low emissions. The high operating temperature (700~900 ℃) has impeded the wider adoption of SOFC stacks and limited their lifetime. This has motivated intense research efforts in developing SOFC stacks which can operate at lower temperatures. The thin electrolytes with a thickness smaller than 10 μm could shorten the ion conductive paths and reduce the associated ohmic loss, effectively improving the electrical performance of the low-temperature SOFC. The electrophoretic deposition process has the advantages of low cost and fast manufacturing speed. It is a potential candidate for large-scale commercial production of electrolyte thin films for low-temperature SOFC. In the present article, the research progress of electrophoretic deposition during the past ten years has been summarized. The key results and achievements for the important procedures of the electrophoretic deposition process, which are respectively substrate selection and pretreatment, stable suspension preparation, bubble elimination and heat treatment process, are also discussed and analyzed. The suggestions for future development of the electrophoretic deposition are also provided based on the requirements of large-scale commercialization of thin electrolyte for low-temperature SOFC.

Contents

1 Introduction

2 Fundamentals of the electrophoretic deposition process

3 Technical challenges and research progress of electrophoretic deposition process for the preparation of electrolyte thin films

3.1 Substrate selection and pretreatment

3.2 Stable suspension preparation

3.3 Bubble elimination

3.4 Heat treatment process

4 Conclusion and outlook

Key words

electrophoretic deposition / dense / electrolyte thin films / intermediate and low temperature / solid oxide fuel cell

Cite this article

Download Citations
Bingguo Zhao , Yadi Liu , Haoran Hu , et al . Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells[J]. Progress in Chemistry. 2023, 35(5): 794-806 https://doi.org/10.7536/PC221104

References

[1]
Zhang Y, Knibbe R, Sunarso J, Zhong Y J, Zhou W, Shao Z P, Zhu Z H. Adv. Mater., 2017, 29(48): 1700132.
[2]
Zeng Z Z, Hao C K, Zhao B G, Qian Y P, Zhuge W L, Wang Y Q, Shi Y X, Zhang Y J. Int. J. Green Energy, 2022, 19(10): 1132.
[3]
Zhao B G, Zeng Z Z, Hao C K, Qian Y P, Zhuge W L, Zhang Y J. J. Eng. Thermophys., 2022, 43(11): 3029.
(赵秉国, 曾泽智, 郝长坤, 钱煜平, 诸葛伟林, 张扬军. 工程热物理学报, 2022, 43(11): 3029.).
[4]
Essaghouri A, Zeng Z Z, Zhao B G, Hao C K, Qian Y P, Zhuge W L, Zhang Y J. Energies, 2022, 15(19): 7048.
[5]
Zhao B G, Zeng Z Z, Hao C K, Essaghouri A, Qian Y P, Zhuge W L, Wang Y Q, Shi Y X, Zhang Y J. Int. J. Energy Res., 2022, 46(13): 18426.
[6]
Zeng Z Z, Qian Y P, Zhang Y J, Hao C K, Dan D, Zhuge W L. Appl. Energy, 2020, 280: 115899.
[7]
Hao C K, Zeng Z Z, Zhao B G, Qian Y P, Zhuge W L, Wang Y Q, Shi Y X, Zhang Y J. Appl. Therm. Eng., 2022, 211: 118453.
[8]
Zeng Z Z, Zhao B G, Hao C K, Essaghouri A, Qian Y P, Zhuge W L, Wang Y Q, Shi Y X, Zhang Y J. Appl. Therm. Eng., 2023, 219: 119577.
[9]
Zuo N, Zhang M L, Mao Z Q, Gao Z, Xie F C. J. Eur. Ceram. Soc., 2011, 31(16): 3103.
[10]
Kim Y B, Park J S, Gür T M, Prinz F B. J. Power Sources, 2011, 196(24): 10550.
[11]
Jaiswal N, Tanwar K, Suman R, Kumar D, Upadhyay S, Parkash O. J. Alloys Compd., 2019, 781: 984.
[12]
Ryu S, Yu W, Chang I, Park T, Cho G Y, Cha S W. Ceram. Int., 2020, 46(8): 12648.
[13]
Fallah Vostakola M, Amini Horri B. Energies, 2021, 14(5): 1280.
[14]
Wang L S, Li C X, Li C J, Yang G J. Electrochimica Acta, 2018, 275: 208.
[15]
Chen R, Zhang S L, Li C J, Li C X. J. Therm. Spray Technol., 2021, 30(1/2): 196.
[16]
Yang B C, Go D, Oh S, Woo Shin J, Kim H J, An J. Appl. Surf. Sci., 2019, 473: 102.
[17]
Yang T R, Zhao H L, Fang M Y, Świerczek K, Wang J, Du Z H. J. Eur. Ceram. Soc., 2019, 39(2/3): 424.
[18]
Baquero T, Escobar J, Frade J, Hotza D. Ceram. Int., 2013, 39(7): 8279.
[19]
Suzuki T, Hasan Z, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M. Electrochem. Solid-State Lett., 2008, 11(6): B87.
[20]
Li J Y, Fan L J, Hou N J, Zhao Y C, Li Y D. RSC Adv., 2022, 12(21): 13220.
[21]
Somalu M R, Muchtar A, Daud W R W, Brandon N P. Renew. Sustain. Energy Rev., 2017, 75: 426.
[22]
Dayaghi A M, Askari M, Rashtchi H, Gannon P. Surf. Coat. Technol., 2013, 223: 110.
[23]
Guo Y B, Zhao Z, Li Y C, Qi H Y, Cheng M J. Chinese Journal of Power Sources, 2020, 44(09): 1297.
(郭意博, 赵哲, 李宇超, 戚惠颖, 程谟杰. 电源技术, 2020, 44(09): 1297.).
[24]
Du K, Song C, Yu M, Chen D, Guo Y, Liu T K, Yang C H, Liu M. Journal of the Chinese Ceramic Society, 2022, 50(07): 1929.
(杜柯, 宋琛, 余敏, 陈丹, 郭宇, 刘太楷, 杨成浩, 刘敏. 硅酸盐学报, 2022, 50(07): 1929.).
[25]
Sakai T, Kato T, Katsui H, Tanaka Y, Goto T. Mater. Today Commun., 2020, 24: 101184.
[26]
Lee H, Park J, Lim Y, Yang H, Kim Y B. J. Alloys Compd., 2021, 861: 158397.
[27]
Han F, Riegraf M, Sata N, Bombarda I, Liensdorf T, Sitzmann C, Langhof N, Schafföner S, Walter C, Geipel C, Costa R. ECS Trans., 2021, 103(1): 139.
[28]
García Sánchez M F, Ponce Rosas I, MalagÓn García J F, Alberto Andraca Adame J, Lartundo-Rojas L, Santana G. Phys. Status Solidi A, 2020, 217(22): 2000235.
[29]
Liu M F, Uba F, Liu Y. J. Am. Ceram. Soc., 2020, 103(9): 5325.
[30]
Yang H, Lee H, Lim Y, Kim Y B. J. Am. Ceram. Soc., 2021, 104(1): 86.
[31]
Pikalova E Y, Kalinina E G. Renew. Sustain. Energy Rev., 2019, 116: 109440.
[32]
https://www.webofscience.com/wos/alldb/basic-search.
[33]
Besra L, Compson C, Liu M L. J. Power Sources, 2007, 173(1): 130.
[34]
Sharkawi N A, Azmi M A, Jaidi Z, Abd. Rahman H, Ahmad S, Mahzan S, Ismail A, Tajul Arifin A M, Zakaria H, Hassan S. Journal of Advanced Mechanical Engineering Applications, 2021, 2(2): 9.
[35]
Chasta G, Himanshu, Dhaka M S. Int. J. Energy Res., 2022, 46(11): 14627.
[36]
Yu J, Zhang Y, Pu J, Shen S X, Wang L J, Zhou F. Hot Working Technology, 2018, 47(08): 11.
(于静, 张勇, 蒲健, 沈淑馨, 王利捷, 周凡. 热加工工艺, 2018, 47(08): 11.).
[37]
Lowrance Y N, Azmi M A, Rahman H A, Rahman N F A, Zakaria H, Hassan S. Key Eng. Mater., 2022, 908: 555.
[38]
Hu S S, Finklea H, Li W Y, Li W, Qi H, Zhang N, Liu X B. ACS Appl. Mater. Interfaces, 2020, 12(9): 11126.
[39]
Chelmehsara M E, Mahmoudimehr J. Int. J. Hydrog. Energy, 2018, 43(32): 15521.
[40]
Mahato N, Banerjee A, Gupta A, Omar S, Balani K. Prog. Mater. Sci., 2015, 72: 141.
[41]
Besra L, Compson C, Liu M L. J. Am. Ceram. Soc., 2006, 89(10): 3003.
[42]
Will J, Hruschka M K M, Gubler L, Gauckler L J. J. Am. Ceram. Soc., 2001, 84(2): 328.
[43]
van Tassel J, Randall C A. J. Mater. Sci., 2004, 39(3): 867.
[44]
Chauoon S, Meepho M, Chuankrerkkul N, Chaianansutcharit S, Pornprasertsuk R. Thin Solid Films, 2018, 660: 741.
[45]
Oskouyi O E, Maghsoudipour A, Shahmiri M, Hasheminiasari M. J. Alloys Compd., 2019, 795: 361.
[46]
Azarian Borojeni I, Raissi B, Maghsoudipour A, Kazemzad M, Talebi T. Key Eng. Mater., 2015, 654: 83.
[47]
Hu S S, Li W Y, Finklea H, Liu X B. Adv. Colloid Interface Sci., 2020, 276: 102102.
[48]
Talebi T, Raissi B, Haji M, Maghsoudipour A. Int. J. Hydrog. Energy, 2010, 35(17): 9405.
[49]
Bozza F, Polini R, Traversa E. Electrochem. Commun., 2009, 11(8): 1680.
[50]
Suzuki H T, Uchikoshi T, Kobayashi K, Suzuki T S, Sugiyama T, Furuya K, Matsuda M, Sakka Y, Munakata F. J. Ceram. Soc. Japan, 2009, 117(1371): 1246.
[51]
Pikalova E Y, Kalinina E G. Int. J. EQ, 2019, 4(1): 1.
[52]
Besra L, Liu M. Prog. Mater. Sci., 2007, 52(1): 1.
[53]
Khanali O, Rajabi M, Baghshahi S. Journal of Ceramic Processing Research, 2017, 18(10): 735.
[54]
Aznam I, Mah J C W, Muchtar A, Somalu M R, Ghazali M J. J. Zhejiang Univ. Sci. A, 2018, 19(11): 811.
[55]
Barbati A C, Kirby B J. ELECTROPHORESIS, 2016, 37(14): 1979.
[56]
Bhattacharjee S. J. Control. Release, 2016, 235: 337.
[57]
Visco S J, Jacobson C, DeJonghe L C. U.S. Patent No. 6, 887, 361. 3 May 2005.
[58]
Dukhin A S, Goetz P J, Wines T H, Somasundaran P. Colloids Surf. A Physicochem. Eng. Aspects, 2000, 173(1/3): 127.
[59]
Kalinina E G, Efimov A A, Safronov A P. Thin Solid Films, 2016, 612: 66.
[60]
Yadav T. U.S. Patent No.7, 683, 098. 23 Mar. 2010.
[61]
Pikalova E Y, Nikonov A V, Zhuravlev V D, Bamburov V G, Samatov O M, Lipilin A S, Khrustov V R, Nikolaenko I V, Plaksin S V, Molchanova N G. Inorg. Mater., 2011, 47(4): 396.
[62]
Osipov V V, Kotov Y A, Ivanov M G, Samatov O M, Lisenkov V V, Platonov V V, Murzakaev A M, Medvedev A I, Azarkevich E I. Laser Phys., 2006, 16(1): 116.
[63]
Kalinina E G, Samatov O M, Safronov A P. Inorg. Mater., 2016, 52(8): 858.
[64]
Ammam M. RSC Adv., 2012, 2(20): 7633.
[65]
Negishi H, Yamaji K, Sakai N, Horita T, Yanagishita H, Yokokawa H. J. Mater. Sci., 2004, 39(3): 833.
[66]
Das D, Basu R N. Mater. Res. Bull., 2013, 48(9): 3254.
[67]
Pikalova E, Osinkin D, Kalinina E. Membranes, 2022, 12(7): 682.
[68]
Guo F W, Javed A, Shapiro I P, Xiao P. J. Eur. Ceram. Soc., 2012, 32(1): 211.
[69]
Xu H, Shapiro I P, Xiao P. J. Eur. Ceram. Soc., 2010, 30(5): 1105.
[70]
Das D, Bagchi B, Basu R N. J. Alloys Compd., 2017, 693: 1220.
[71]
Matsuda M, Hashimoto M, Matsunaga C, Suzuki T S, Sakka Y, Uchikoshi T. J. Eur. Ceram. Soc., 2016, 36(16): 4077.
[72]
Kalinina E G, Pikalova E Y. Russ. J. Phys. Chem., 2021, 95(9): 1942.
[73]
Pantoja-Pertegal J L, Díaz-Parralejo A, Macías-García A, Sánchez-González J, Cuerda-Correa E M. Ceram. Int., 2021, 47(10): 13312.
[74]
Schwer C, Kenndler E. Anal. Chem., 1991, 63(17): 1801.
[75]
Ishihara T, Sato K, Takita Y. J. Am. Ceram. Soc., 1996, 79(4): 913.
[76]
Zhang H, Zhan Z L, Liu X B. J. Power Sources, 2011, 196(19): 8041.
[77]
Tabellion J, Clasen R. J. Mater. Sci., 2004, 39(3): 803.
[78]
Uchikoshi T, Ozawa K, Hatton B D, Sakka Y. J. Mater. Res., 2001, 16(2): 321.
[79]
Sakurada O, Suzuki K, Miura T, Hashiba M. J. Mater. Sci., 2004, 39(5): 1845.
[80]
Besra L, Uchikoshi T, Suzuki T S, Sakka Y. J. Am. Ceram. Soc., 2008, 91(10): 3154.
[81]
Oskouyi O E, Shahmiri M, Maghsoudipour A, Hasheminiasari M. J. Alloys Compd., 2019, 785: 220.
[82]
Solomentsev Y, Böhmer M, Anderson J L. Langmuir, 1997, 13(23): 6058.
[83]
Hu S S, Li W, Li W Y, Zhang N, Qi H, Finklea H, Liu X B. Colloids Surf. A Physicochem. Eng. Aspects, 2019, 579: 123717.
[84]
Neirinck B, Fransaer J, Van der Biest O, Vleugels J. Electrochem. Commun., 2009, 11(1): 57.
[85]
Talebi T, Haji M, Raissi B. Int. J. Hydrog. Energy, 2010, 35(17): 9420.
[86]
Baharuddin N A, Muchtar A, Somalu M R, MuhammedAliS M, Rahman H. Ceramics-Silikáty, 2016, 60(2): 115.
[87]
Kalinina E, Pikalova E, Ermakova L, Bogdanovich N. Coatings, 2021, 11(7): 805.
[88]
Yamamoto K, Sato K, Matsuda M, Ozawa M, Ohara S. Ceram. Int., 2021, 47(11): 15939.
[89]
LÓpez-Honorato E, Dessoliers M, Shapiro I P, Wang X, Xiao P. Ceram. Int., 2012, 38(8): 6777.
[90]
Dickerson J H, Boccaccini A R. Springer Science & Business Media, 2011.
[91]
Baufeld B, van der Biest O, Rätzer-Scheibe H J. J. Eur. Ceram. Soc., 2008, 28(9): 1793.
[92]
Guo F W, Xiao P. J. Eur. Ceram. Soc., 2012, 32(16): 4157.
[93]
Bai M W, Guo F W, Xiao P. Ceram. Int., 2014, 40(10): 16611.
[94]
Hu S, Li W, Yao M, Li T, Liu X. Fuel Cells, 2017, 17(6): 869.
[95]
Alavi B, Aghajani H, Rasooli A. J. Eur. Ceram. Soc., 2019, 39(7): 2526.
[96]
Nazari N, Aghajani H. J. Dispers. Sci. Technol., 2020, 41(12): 1754.
[97]
Savo G, Rainer A, D’Epifanio A, Licoccia S, Traversa E. ECS Proceedings Volumes, 2005, 2005(1): 1031.
[98]
Chen C, Fan H Y, Xing S Y, Zhou X Y, Wang W, Yuan J H. Shanghai Metals, 2020, 42(05): 5.
(陈超, 范宏誉, 邢守义, 周细应, 王伟, 袁建辉. 上海金属, 2020, 42(05): 5.).
[99]
Salehzadeh D, Torabi M, Sadeghian Z, Marashi P. J. Alloys Compd., 2020, 830: 154654.
[100]
Majhi S M, Behura S K, Bhattacharjee S, Singh B P, Chongdar T K, Gokhale N M, Besra L. Int. J. Hydrog. Energy, 2011, 36(22): 14930.
[101]
Das D, Basu R N. J. Am. Ceram. Soc., 2014, 97(11): 3452.
[102]
Meepho M, Wattanasiriwech D, Aungkavattana P, Wattanasiriwech S. Energy Procedia, 2015, 79: 272.
[103]
Kalinina E, Shubin K, Pikalova E. Membranes, 2022, 12(3): 308.
[104]
Ishii K, Matsunaga C, Kobayashi K, Stevenson A J, Tardivat C, Uchikoshi T. J. Eur. Ceram. Soc., 2021, 41(4): 2709.

Funding

Advanced Aviation Power Innovation institution and the Aero Engine Academy of China, and the Tsinghua University Initiative Scientific Research Program
PDF(8403 KB)

Accesses

Citation

Detail

Sections
Recommended

/