Modification of Cathode Materials for Prussian Blue-Based Sodium-Ion Batteries

Qingping Li, Tao Li, Chenchen Shao, Wei Liu

Prog Chem ›› 2023, Vol. 35 ›› Issue (7) : 1053-1064.

PDF(16902 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(16902 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (7) : 1053-1064. DOI: 10.7536/PC221116
Review

Modification of Cathode Materials for Prussian Blue-Based Sodium-Ion Batteries

Author information +
History +

Abstract

Prussian blue (PB) and its analogues (PBAs), which are composed of three-dimensional frame structure, are ideal cathode materials for sodium ion battery (SIB) and can provide a wide channel for sodium ion embedding and removal. However, there are a lot of water molecules and vacancies in PBAs materials, which greatly reduces the storage sites of sodium ions. Furthermore, transition metal ions in the metal organic framework are easy to dissolve during the cycles, resulting in limited sodium storage capacity and poor cycle stability of PBAs cathode materials. In recent years, a variety of PBAs modification technologies have been developed to improve their sodium storage performance. Based on recent related work and existing literature reports, this paper summarizes the process design, preparation methods, electrochemical behavior and other aspects of different modification technologies, and systematically reviews and prospects the research progress of various modification technologies of PBAs cathode materials in sodium ion batteries.

Contents

1 Introduction

2 Structure of Prussian blue and its analogues

3 Modification method of Prussian blue cathode material

3.1 Chelating agent assisted method

3.2 Increase Na+concentration

3.3 Element doping

3.4 Inactive layer coating

3.5 Conductive agent composite technology

3.6 Self-assembly

3.7 Other modification methods

4 Conclusion and outlook

Key words

sodium ion battery / prussian blue / cathode material / crystal structure / reaction mechanism / modification method

Cite this article

Download Citations
Qingping Li , Tao Li , Chenchen Shao , et al. Modification of Cathode Materials for Prussian Blue-Based Sodium-Ion Batteries[J]. Progress in Chemistry. 2023, 35(7): 1053-1064 https://doi.org/10.7536/PC221116

References

[1]
Hwang J Y, Myung S T, Sun Y K. Chem. Soc. Rev., 2017, 46(12): 3529.
[2]
Hu Y S, Komaba S, Forsyth M, Johnson C, Rojo T. Small Methods, 2019, 3(4): 1900184.
[3]
Wang Z N, Sougrati M T, He Y W, Le Pham P N, Xu W, Iadecola A, Ge R L, Zhou W H, Zheng Q, Li X F, Wang J H. Nano Energy, 2023, 109: 108256.
[4]
Choi A, Kim T, Kim M H, Lee S W, Jung Y H, Lee H W. Adv. Funct. Mater., 2022, 32(19): 2111901.
[5]
Wang B Q, Han Y, Wang X, Bahlawane N, Pan H G, Yan M, Jiang Y Z. iScience, 2018, 3: 110.
[6]
Shen X, Zhou Q, Han M, Qi X G, Li B, Zhang Q Q, Zhao J M, Yang C, Liu H Z, Hu Y S. Nat. Commun., 2021, 12: 2848.
[7]
Deng L, Yu F D, Xia Y, Jiang Y S, Sui X L, Zhao L, Meng X H, Que L F, Wang Z B. Nano Energy, 2021, 82: 105659.
[8]
Liu Q N, Hu Z, Li W J, Zou C, Jin H L, Wang S, Chou S L, Dou S X. Energy Environ. Sci., 2021, 14(1): 158.
[9]
Wang C C, Liu L J, Zhao S, Liu Y C, Yang Y B, Yu H J, Lee S, Lee G H, Kang Y M, Liu R, Li F J, Chen J. Nat. Commun., 2021, 12: 2256.
[10]
Li C F, Li A, Li M J, Xiong P X, Liu Y S, Cheng M R, Geng D L, Xu Y H. ACS Appl. Mater. Interfaces, 2022, 14(21): 24462.
[11]
Geng W G, Zhang Z H, Yang Z L, Tang H Y, He G. Chem. Commun., 2022, 58(28): 4472.
[12]
Sun J G, Ye H L, Oh J A S, Plewa A, Sun Y, Wu T, Sun Q M, Zeng K Y, Lu L. Energy Storage Mater., 2021, 43: 182.
[13]
Peng J, Zhang W, Liu Q N, Wang J Z, Chou S L, Liu H K, Dou S X. Adv. Mater., 2022, 34(15): 2108384.
[14]
Marzak P, Yun J, Dorsel A, Kriele A, Gilles R, Schneider O, Bandarenka A S. J. Phys. Chem. C, 2018, 122(16): 8760.
[15]
Nai J W, Zhang J T, Lou X W (David), Chem, 2018, 4(8): 1967.
[16]
Wu X Y, Sun M Y, Shen Y F, Qian J F, Cao Y L, Ai X P, Yang H X. ChemSusChem, 2014, 7(2): 407.
[17]
Niu L, Chen L, Zhang J, Jiang P, Liu Z P. J. Power Sources, 2018, 380: 135.
[18]
Peng J, Li C, Yin J W, Wang J S, Yu Y H, Shen Y, Fang J, Chen A N, Xu Y, Rehman R, Fang C, Miao L, Jiang R Z, Li Q, Han J T, Huang Y H. ACS Appl. Energy Mater., 2019, 2(1): 187.
[19]
Moritomo Y, Yoshida Y, Iwaizumi H, Inoue D, Nagai I, Shibata T. J. Phys. Soc. Jpn., 2021, 90(1): 013601.
[20]
Li M, Mullaliu A, Passerini S, Giorgetti M. Batteries, 2021, 7(1): 5.
[21]
Baster D, Kondracki Ł, Oveisi E, Trabesinger S, Girault H H. ACS Appl. Energy Mater., 2021, 4(9): 9758.
[22]
Zuo D X, Wang C P, Wu J W, Qiu H J, Zhang Q, Han J J, Liu X J. Solid State Ion., 2019, 340: 115025.
[23]
Jiang M W, Hou Z D, Wang J J, Ren L B, Zhang Y, Wang J G. Nano Energy, 2022, 102: 107708.
[24]
Wheeler S, Capone I, Day S, Tang C, Pasta M. Chem. Mater., 2019, 31(7): 2619.
[25]
Shen Z L, Guo S H, Liu C L, Sun Y P, Chen Z, Tu J, Liu S Y, Cheng J P, Xie J, Cao G S, Zhao X B. ACS Sustainable Chem. Eng., 2018, 6(12): 16121.
[26]
Li C, Zang R, Li P X, Man Z M, Wang S J, Li X M, Wu Y H, Liu S S, Wang G X. Chem. Asian J., 2018, 13(3): 342.
[27]
Xie B X, Zuo P J, Wang L G, Wang J J, Huo H, He M X, Shu J, Li H F, Lou S F, Yin G P. Nano Energy, 2019, 61: 201.
[28]
Xu L, Li H, Wu X Y, Shao M M, Liu S Y, Wang B, Zhao G Y, Sheng P, Chen X, Han Y, Cao Y L, Ai X P, Qian J F, Yang H X. Electrochem. Commun., 2019, 98: 78.
[29]
Yan C X, Zhao A L, Zhong F P, Feng X M, Chen W H, Qian J F, Ai X P, Yang H X, Cao Y L. Electrochimica Acta, 2020, 332: 135533.
[30]
Wang W L, Gang Y, Hu Z, Yan Z C, Li W J, Li Y C, Gu Q F, Wang Z X, Chou S L, Liu H K, Dou S X. Nat. Commun., 2020, 11: 980.
[31]
Qin M S, Ren W H, Jiang R X, Li Q, Yao X H, Wang S Q, You Y, Mai L Q. ACS Appl. Mater. Interfaces, 2021, 13(3): 3999.
[32]
Xu Y, Chang M, Fang C, Liu Y, Qiu Y G, Ou M Y, Peng J, Wei P, Deng Z, Sun S X, Sun X P, Li Q, Han J T, Huang Y H. ACS Appl. Mater. Interfaces, 2019, 11(33): 29985.
[33]
Sun Y P, Xu Y L, Xu Z, Sun Y, Xu X W, Tu J, Xie J, Liu S Y, Zhao X B. J. Mater. Chem. A, 2021, 9(37): 21228.
[34]
Peng F W, Yu L, Gao P Y, Liao X Z, Wen J G, He Y S, Tan G Q, Ren Y, Ma Z F. J. Mater. Chem. A, 2019, 7(39): 22248.
[35]
Xu Y, Wan J, Huang L, Ou M Y, Fan C Y, Wei P, Peng J, Liu Y, Qiu Y G, Sun X P, Fang C, Li Q, Han J T, Huang Y H, Alonso J A, Zhao Y S. Adv. Energy Mater., 2019, 9(4): 1803158.
[36]
Xu Y, Ou M Y, Liu Y, Xu J, Sun X P, Fang C, Li Q, Han J T, Huang Y H. Nano Energy, 2020, 67: 104250.
[37]
Xu Y, Wan J, Huang L, Xu J, Ou M Y, Liu Y, Sun X P, Li S, Fang C, Li Q, Han J T, Huang Y H, Zhao Y S. Energy Storage Mater., 2020, 33: 432.
[38]
Wu X Y, Deng W W, Qian J F, Cao Y L, Ai X P, Yang H X. J. Mater. Chem. A, 2013, 1(35): 10130.
[39]
Lee H W, Wang R Y, Pasta M, Woo Lee S, Liu N, Cui Y. Nat. Commun., 2014, 5: 5280.
[40]
Chen Y C, Woo H J, Rizwan M binti Yahya R, Cui D H, Luo D, Chen L, Arof A K M, Wang F. ACS Appl. Energy Mater., 2019, 2(12): 8570.
[41]
Oliver-Tolentino M, González M M, Osiry H, Ramos-Sánchez G, González I. Dalton Trans., 2018, 47(46): 16492.
[42]
Xie J P, Ma L, Li J L, Yin X Q, Wen Z R, Zhong Y L, Li C W, Liu Y, Shen Z X, Mai W J, Hong G, Zhang W J. Adv. Mater., 2022, 34(44): 2205625.
[43]
Oliver-Tolentino M A, Vázquez-Samperio J, Arellano-Ahumada S N, Guzmán-Vargas A, Ramírez-Rosales D, Wang J A, Reguera E. J. Phys. Chem. C, 2018, 122(36): 20602.
[44]
Wang J, Mi C H, Nie P, Dong S Y, Tang S Y, Zhang X G. J. Electroanal. Chem., 2018, 818: 10.
[45]
Li W F, Zhang F, Xiang X D, Zhang X C. ChemElectroChem, 2018, 5(2): 350.
[46]
Peng J, Wang J S, Yi H C, Hu W J, Yu Y H, Yin J W, Shen Y, Liu Y, Luo J H, Xu Y, Wei P, Li Y Y, Jin Y, Ding Y, Miao L, Jiang J J, Han J T, Huang Y H. Adv. Energy Mater., 2018, 8(11): 1702856.
[47]
Ge P, Li S J, Shuai H L, Xu W, Tian Y, Yang L, Zou G Q, Hou H S, Ji X B. Adv. Mater., 2019, 31(3): 1806092.
[48]
Zhang L L, Wei C, Fu X Y, Chen Z Y, Yan B, Sun P P, Chang K J, Yang X L. Carbon Energy, 2021, 3(5): 827.
[49]
Li J K, He X, Ostendorp S, Zhang L, Hou X, Zhou D, Yan B, Meira D M, Yang Y, Jia H, Schumacher G, Wang J, Paillard E, Wilde G, Winter M, Li J. Electrochimica Acta, 2020, 342: 135928.
[50]
Shettigar A, Moorthy B, Paulraj V, Kim D K, Bharathi K K. ECS J. Solid State Sci. Technol., 2021, 10(6): 061012.
[51]
Chen Z Y, Fu X Y, Zhang L L, Yan B, Yang X L. ACS Appl. Mater. Interfaces, 2022, 14(4): 5506.
[52]
Wei C, Fu X Y, Zhang L L, Liu J, Sun P P, Gao L, Chang K J, Yang X L. Chem. Eng. J., 2021, 421: 127760.
[53]
Yang D Z, Xu J, Liao X Z, He Y S, Liu H M, Ma Z F. Chem. Commun., 2014, 50(87): 13377.
[54]
Feng F, Chen S L, Zhao S Q, Zhang W L, Miao Y G, Che H Y, Liao X Z, Ma Z F. Chem. Eng. J., 2021, 411: 128518.
[55]
Sun J G, Ye H L, Oh J A S, Sun Y, Plewa A, Wang Y M, Wu T, Zeng K Y, Lu L. Nano Res., 2022, 15(3): 2123.
[56]
Wang Z H, Huang Y X, Luo R, Wu F, Li L, Xie M, Huang J Q, Chen R J. J. Power Sources, 2019, 436: 226868.
[57]
Zuo D X, Wang C P, Han J J, Han Q H, Hu Y N, Wu J W, Qiu H J, Zhang Q, Liu X J. J. Mater. Sci. Technol., 2022, 114: 180.
[58]
Parajuli D, Tanaka H, Sakurai K, Hakuta Y, Kawamoto T. Materials, 2021, 14(5): 1151.
[59]
Wang H, Xu E Z, Yu S M, Li D T, Quan J J, Xu L, Wang L, Jiang Y. ACS Appl. Mater. Interfaces, 2018, 10(40): 34222.
[60]
Wang H, Wang L, Chen S M, Li G P, Quan J J, Xu E Z, Song L, Jiang Y. J. Mater. Chem. A, 2017, 5(7): 3569.
[61]
Prabakar S J R, Jeong J, Pyo M. RSC Adv., 2015, 5(47): 37545.
[62]
Luo J H, Sun S X, Peng J, Liu B, Huang Y Y, Wang K, Zhang Q, Li Y Y, Jin Y, Liu Y, Qiu Y G, Li Q, Han J T, Huang Y H. ACS Appl. Mater. Interfaces, 2017, 9(30): 25317.
[63]
You Y, Yao H R, Xin S, Yin Y X, Zuo T T, Yang C P, Guo Y G, Cui Y, Wan L J, Goodenough J B. Adv. Mater., 2016, 28(33): 7243.
[64]
Yuan Y B, Bin D, Dong X L, Wang Y G, Wang C X, Xia Y Y. ACS Sustainable Chem. Eng., 2020, 8(9): 3655.
[65]
Zhang Q, Fu L, Luan J Y, Huang X B, Tang Y G, Xie H L, Wang H Y. J. Power Sources, 2018, 395: 305.
[66]
Luo Y, Yang L X, Liu Q, Yan Y W. R. Soc. Open Sci., 2021, 8(11): 211092.
[67]
Peng F W, Yu L, Yuan S Q, Liao X Z, Wen J G, Tan G Q, Feng F, Ma Z F. ACS Appl. Mater. Interfaces, 2019, 11(41): 37685.
[68]
Wang X, Wang B Q, Tang Y X, Xu B B, Liang C, Yan M, Jiang Y Z. J. Mater. Chem. A, 2020, 8(6): 3222.
[69]
Kim D S, Yoo H, Park M S, Kim H. J. Alloys Compd., 2019, 791: 385.
[70]
Tang X, Liu H, Su D W, Notten P H L, Wang G X. Nano Res., 2018, 11(8): 3979.
[71]
Feng F, Chen S L, Liao X Z, Ma Z F. Small Methods, 2019, 3(4): 1800259.
[72]
Ren W H, Zhu Z X, Qin M S, Chen S, Yao X H, Li Q, Xu X M, Wei Q L, Mai L Q, Zhao C. Adv. Funct. Mater., 2019, 29(15): 1806405.
[73]
Lim C Q X, Tan Z K. ACS Appl. Energy Mater., 2021, 4(6): 6214.
[74]
Wang P Y, Li Y H, Zhu D G, Gong F L, Fang S M, Zhang Y H, Sun S M. Dalton Trans., 2022, 51(25): 9622.
[75]
Peng J, Zhang W, Hu Z, Zhao L F, Wu C, Peleckis G, Gu Q F, Wang J Z, Liu H K, Dou S X, Chou S L. Nano Lett., 2022, 22(3): 1302.
PDF(16902 KB)

Accesses

Citation

Detail

Sections
Recommended

/