Progress of Covalent Organic Frameworks in Iodine Capture

Yunchao Ma, Yuxin Yao, Yue Fu, Chunbo Liu, Bo Hu, Guangbo Che

Prog Chem ›› 2023, Vol. 35 ›› Issue (7) : 1097-1105.

PDF(11635 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(11635 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (7) : 1097-1105. DOI: 10.7536/PC221118
Review

Progress of Covalent Organic Frameworks in Iodine Capture

Author information +
History +

Abstract

With the development of the nuclear industry, radioactive iodine was identified as one of the most hazardous nuclear wastes. Radioactive iodine capture also plays an important role in reducing the contamination of nuclear wastewater. Covalent organic frameworks (COFs), a crystalline porous organic material formed by covalent bond connection, are considered an ideal candidate for iodine capture materials for their large specific surface area, regular pore structure and high chemical stability. COFs are considered as ideal iodine trapping materials due to their structural characteristics and the fact that the adsorption sites of COFs are easily occupied by iodine molecules. This paper mainly reviews the progress of COFs with periodic porous structure and tunable functions in the field of iodine capture. Firstly, the recent progress in iodine capture of imine bonded COFs was briefly reviewed. Secondly, iodine capture capacity of compound COFs and ionic COFs are discussed. Finally, the potential of efficient iodine capture COFs to scale and the future development of this field.

Contents

1 Introduction

2 Capture of iodine by different types of COFs

2.1 Imine bonded COFs

2.2 Compound-functionalized COFs

2.3 3D COFs

2.4 Ionic-multivariated COFs

3 Conclusion and outlook

Key words

covalent organic frameworks / radioactive materials / functionalized synthesis / iodine capture

Cite this article

Download Citations
Yunchao Ma , Yuxin Yao , Yue Fu , et al . Progress of Covalent Organic Frameworks in Iodine Capture[J]. Progress in Chemistry. 2023, 35(7): 1097-1105 https://doi.org/10.7536/PC221118

References

[1]
Vellingiri K, Kim K H, Pournara A, Deep A. Prog. Mater. Sci., 2018, 94: 1.
[2]
Chapman K W, Chupas P J, Nenoff T M. J. Am. Chem. Soc., 2010, 132(26): 8897.
[3]
Pham T C T, Docao S, Hwang I C, Song M K, Choi D Y, Moon D, Oleynikov P, Yoon K B. Energy Environ. Sci., 2016, 9(3): 1050.
[4]
Lei C, Gao J K, Ren W J, Xie Y B, Abdalkarim S Y H, Wang S L, Ni Q Q, Yao J M. Carbohydr. Polym., 2019, 205: 35.
[5]
Adams G M, Weller A S. Coord. Chem. Rev., 2018, 355: 150.
[6]
Shahvar A, Soltani R, Saraji M, Dinari M, Alijani S. J. Chromatogr. A, 2018, 1565: 48.
[7]
Afshari M, Dinari M. J. Hazard. Mater., 2020, 385: 121514.
[8]
Coõteé A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.
[9]
Tong D Y, Zhao Y L, Chen Z C, Wang Y Q, Jia Z Q, Nie X M, Xiao S T. Phys. Chem. Chem. Phys., 2021, 23(44): 25365.
[10]
Smith B J, Overholts A C, Hwang N, Dichtel W R. Chem. Commun., 2016, 52(18): 3690.
[11]
Wen Z L, Wang S L, Fu S Y, Qian J Y, Yan Q Q, Xu H J, Zuo K M, Su X F, Zeng C Y, Gao Y N. Chem. Res. Chin. Univ., 2022, 38(2): 472.
[12]
Chen R, Hu T L, Li Y Q. React. Funct. Polym., 2021, 159: 104806.
[13]
Chen R, Hu T L, Zhang W, He C Y, Li Y Q. Microporous Mesoporous Mater., 2021, 312: 110739.
[14]
Sun Y H, Song S N, Xiao D H, Gan L F, Wang Y R. ACS Omega, 2020, 5(38): 24262.
[15]
Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133(49): 19816.
[16]
Han X, Zhang J, Huang J J, Wu X W, Yuan D Q, Liu Y, Cui Y. Nat. Commun., 2018, 9: 1294.
[17]
Vyas V S, Vishwakarma M, Moudrakovski I, Haase F, Savasci G, Ochsenfeld C, Spatz J P, Lotsch B V. Adv. Mater., 2016, 28(39): 8749.
[18]
Gomes R, Bhanja P, Bhaumik A. Chem. Commun., 2015, 51(49): 10050.
[19]
Song S N, Shi Y, Liu N, Liu F Q. ACS Appl. Mater. Interfaces, 2021, 13(8): 10513.
[20]
Zhai L P, Han D D, Dong J H, Jiang W Q, Nie R M, Yang X B, Luo X L, Li Z P. Macromol. Rapid Commun., 2021, 42(13): 2100032.
[21]
Zhao Y X, Liu X, Li Y P, Xia M, Xia T, Sun H C, Sui Z Y, Hu X M, Chen Q. Microporous Mesoporous Mater., 2021, 319: 111046.
[22]
Zhang J H, Liu J C, Liu Y Z, Wang Y J, Fang Q R, Qiu S L. Chem. Res. Chin. Univ., 2022, 38(2): 456.
[23]
Wu Q, Xie R K, Mao M J, Chai G L, Yi J D, Zhao S S, Huang Y B, Cao R. ACS Energy Lett., 2020, 5(3): 1005.
[24]
Wang G B, Xie K H, Zhu F C, Kan J L, Li S, Geng Y, Dong Y B. Chem. Res. Chin. Univ., 2022, 38(2): 409.
[25]
Chang J H, Li H, Zhao J, Guan X Y, Li C M, Yu G T, Valtchev V, Yan Y S, Qiu S L, Fang Q R. Chem. Sci., 2021, 12(24): 8452.
[26]
He L W, Chen L, Dong X L, Zhang S T, Zhang M X, Dai X, Liu X J, Lin P, Li K F, Chen C L, Pan T T, Ma F Y, Chen J C, Yuan M J, Zhang Y G, Chen L, Zhou R H, Han Y, Chai Z F, Wang S A. Chem, 2021, 7(3): 699.
[27]
Liu X W, Zhang A R, Ma R, Wu B, Wen T, Ai Y J, Sun M T, Jin J, Wang S H, Wang X K. Chin. Chemical Lett., 2022, 33(7): 3549.
[28]
Qian X, Zhu Z Q, Sun H X, Ren F, Mu P, Liang W D, Chen L H, Li A. ACS Appl. Mater. Interfaces, 2016, 8(32): 21063.
[29]
Wei H T, Ning J, Cao X D, Li X H, Hao L. J. Am. Chem. Soc., 2018, 140(37): 11618.
[30]
Jie K, Zhou Y, Li E. J. Am. Chem. Soc., 2017, 139: 15320.
[31]
Li Y Q, Li Y R, Zhao Q H, Li L, Chen R, He C Y. Cellulose, 2020, 27(3): 1517.
[32]
Zhu Y, Qi Y, Guo X H, Zhang M C, Jia Z M, Xia C Q, Liu N, Bai C Y, Ma L J, Wang Q. J. Mater. Chem. A, 2021, 9(31): 16961.
[33]
Wang H L, Bao Z B, Wu H, Lin R B, Zhou W, Hu T L, Li B, Zhao J C G, Chen B L. Chem. Commun., 2017, 53(81): 11150.
[34]
Zhou Y, Kan L, Eubank J F, Li G H, Zhang L R, Liu Y L. Chem. Sci., 2019, 10(26): 6565.
[35]
Tan L L, Li H W, Tao Y C, Zhang S X A, Wang B, Yang Y W. Adv. Mater., 2014, 26(41): 7027.
[36]
Wang C, Wang Y, Ge R L, Song X D, Xing X Q, Jiang Q K, Lu H, Hao C, Guo X W, Gao Y N, Jiang D L. Chem. Eur. J., 2018, 24(3): 585.
[37]
Guo X H, Li Y, Zhang M C, Cao K C, Tian Y, Qi Y, Li S J, Li K, Yu X Q, Ma L J. Angewandte Chemie Int. Ed., 2020, 59(50): 22697.
[38]
Jiao J J, Gong W, Wu X W, Yang S P, Cui Y. Coord. Chem. Rev., 2019, 385: 174.
[39]
Huang N, Zhai L P, Coupry D E, Addicoat M A, Okushita K, Nishimura K, Heine T, Jiang D L. Nat. Commun., 2016, 7: 12325.
[40]
Xie Y Q, Pan T T, Lei Q, Chen C L, Dong X L, Yuan Y Y, Shen J, Cai Y C, Zhou C H, Pinnau I, Han Y. Angewandte Chemie Int. Ed., 2021, 60(41): 22432.

Funding

National Natural Science Foundation of China(22205076)
Project of Department of Science & Technology of Jilin Province(YDZJ202201ZYTS335)
Project of Human Resources and Social Security Department of Jilin Province(2021Y019)
Human Resources and Social Security Department of Jilin Province(2021Z007)
Jilin Province Development and Reform Commission(2021C036-7)
Jilin Province Development and Reform Commission(2021C038-7)
Project of Education Department of Jilin Province(JJKH20220427KJ)
PDF(11635 KB)

Accesses

Citation

Detail

Sections
Recommended

/