Preparation and Application of Functional Polymer-Based Electromagnetic Shielding Materials

Wenbo Zhang, Jianing Wang, Linfeng Wei, Hua Jin, Yan Bao, Jianzhong Ma

Prog Chem ›› 2023, Vol. 35 ›› Issue (7) : 1065-1076.

PDF(10085 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(10085 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (7) : 1065-1076. DOI: 10.7536/PC221121
Review

Preparation and Application of Functional Polymer-Based Electromagnetic Shielding Materials

Author information +
History +

Abstract

With the rapid development of high-power electronic equipment and electronic communication technology such as the emerging 5G mobile network communication technology, the development of high-performance electromagnetic interference shielding materials has become a desideratum. Polymer-based electromagnetic shielding materials (PEMSM) have been widely applied due to their advantages of lightweight, machinability, and adjustable conductivity. The increasingly complex application environment and operating conditions put forward higher requirements for the functionality of PEMSM. This paper firstly discusses the key concepts and loss mechanism of electromagnetic shielding (reflection, absorption, and multiple reflections), and then summarizes the current structural design of electromagnetic shielding composites including homogeneous structure, segregation structure, porous structure, and layered structure. The process of homogeneous structure is simple, and segregation structure can reduce the conductivity percolation threshold of materials. The porous structure is helpful for electromagnetic waves reflection and absorption, and the layered structure can make electromagnetic wave reflect inside the material many times. The research progress of PEMSM with the functions such as durability, superhydrophobicity, antibacterial property, Joule heating property, etc. is introduced in detail. Finally, the development of PEMSM is prospected.

Contents

1 Introduction

2 Mechanism of EMI Shielding

3 Structural designs of polymer-based electromagnetic shielding materials

3.1 Homogeneous structure

3.2 Segregation structure

3.3 Porous structure

3.4 Layered structure

4 Functional polymer-based electromagnetic shielding materials

4.1 Durability

4.2 Superhydrophobicity

4.3 Antibacterial property

4.4 Joule heating property

4.5 Others

5 Conclusion and outlook

Key words

polymer-based electromagnetic shielding materials / electromagnetic shielding / structural design / functional composites

Cite this article

Download Citations
Wenbo Zhang , Jianing Wang , Linfeng Wei , et al . Preparation and Application of Functional Polymer-Based Electromagnetic Shielding Materials[J]. Progress in Chemistry. 2023, 35(7): 1065-1076 https://doi.org/10.7536/PC221121

References

[1]
Wang H B, Teng K Y, Chen C, Li X J, Xu Z W, Chen L, Fu H J, Kuang L Y, Ma M J, Zhao L H. Mater. Lett., 2017, 186: 78.
[2]
Wang G L, Wang L, Mark L H, Shaayegan V, Wang G Z, Li H P, Zhao G Q, Park C B. ACS Appl. Mater. Interfaces, 2018, 10(1): 1195.
[3]
Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J. Adv. Funct. Mater., 2019, 29(25): 1807398.
[4]
Thomassin J M, JÉrôme C, Pardoen T, Bailly C, Huynen I, Detrembleur C. Mater. Sci. Eng. R Rep., 2013, 74(7): 211.
[5]
Bhattacharjee Y, Chatterjee D, Bose S. ACS Appl. Mater. Interfaces, 2018, 10(36): 30762.
[6]
Abbasi H, Antunes M, Velasco J I. Prog. Mater. Sci., 2019, 103: 319.
[7]
Zhang F F, Hu J S, Zhao P, He P, Mi H Y, Guo Z H, Liu C T, Shen C Y. Compos. A Appl. Sci. Manuf., 2021, 147: 106472.
[8]
Sang G L, Xu P, Yan T, Murugadoss V, Naik N, Ding Y S, Guo Z H. Nano Micro Lett., 2021, 13(1): 1.
[9]
Das N C, Khastgir D, Chaki T K, Chakraborty A. Compos. A Appl. Sci. Manuf., 2000, 31(10): 1069.
[10]
Hong X H, Chung D D L. Carbon, 2017, 111: 529.
[11]
Chen Y, Zhang H B, Yang Y B, Wang M, Cao A Y, Yu Z Z. Adv. Funct. Mater., 2016, 26(3): 447.
[12]
Zhao B, Deng J S, Zhao C X, Wang C D, Chen yu guang, Hamidinejad M, Li R S, Park C B. J. Mater. Chem. C, 2020, 8(1): 58.
[13]
Wang L, Qiu H, Liang C B, Song P, Han Y X, Han Y X, Gu J W, Kong J, Pan D, Guo Z H. Carbon, 2019, 141: 506.
[14]
Jou W S, Cheng H Z, Hsu C F. J. Alloys Compd., 2007, 434/435: 641.
[15]
Rohini R, Bose S. ACS Appl. Mater. Interfaces, 2014, 6(14): 11302.
[16]
Kim S, Oh J S, Kim M G, Jang W, Wang M, Kim Y, Seo H W, Kim Y C, Lee J H, Lee Y, Nam J D. ACS Appl. Mater. Interfaces, 2014, 6(20): 17647.
[17]
Kumar R, Sahoo S, Joanni E, Singh R K, Yadav R M, Verma R K, Singh D P, Tan W K, PÉrez del Pino A, Moshkalev S A, Matsuda A. Nano Res., 2019, 12(11): 2655.
[18]
Munalli D, Dimitrakis G, Chronopoulos D, Greedy S, Long A. Compos. B Eng., 2019, 173: 106906.
[19]
Tong Y, He M, Zhou Y M, Zhong X, Fan L D, Huang T Y, Liao Q, Wang Y J. Appl. Surf. Sci., 2018, 434: 283.
[20]
Kumar P, Narayan Maiti U, Sikdar A, Kumar Das T, Kumar A, Sudarsan V. Polym. Rev., 2019, 59(4): 687.
[21]
Wu L P, Wu F, Sun Q Y, Shi J Y, Xie A M, Zhu X F, Dong W. J. Mater. Chem. C, 2021, 9(9): 3316.
[22]
Singh A K, Shishkin A, Koppel T, Gupta N. Compos. B Eng., 2018, 149: 188.
[23]
Sankaran S, Deshmukh K, Ahamed M B, Khadheer Pasha S K. Compos. A Appl. Sci. Manuf., 2018, 114: 49.
[24]
Pakdel E, Wang J F, Kashi S M, Sun L, Wang X G. Adv. Colloid Interface Sci., 2020, 277: 102116.
[25]
Nazir A, Yu H J, Wang L, Haroon M, Ullah R S, Fahad S, Naveed K U R, Elshaarani T, Khan A, Usman M. J. Mater. Sci., 2018, 53(12): 8699.
[26]
Wang Y, Gu F Q, Ni L J, Liang K, Marcus K, Liu S L, Yang F, Chen J J, Feng Z S. Nanoscale, 2017, 9(46): 18318.
[27]
Zhang D Q, Xiong Y F, Cheng J Y, Chai J X, Liu T T, Ba X W, Ullah S, Zheng G P, Yan M, Cao M S. Sci. Bull., 2020, 65(2): 138.
[28]
Zhang D Q, Chai J X, Cheng J Y, Jia Y X, Yang X Y, Wang H, Zhao Z L, Han C, Shan G C, Zhang W J, Zheng G P, Cao M S. Appl. Surf. Sci., 2018, 462: 872.
[29]
Cheng J Y, Zhang H B, Xiong Y F, Gao L F, Wen B, Raza H, Wang H, Zheng G P, Zhang D Q, Zhang H. J. Materiomics, 2021, 7(6): 1233.
[30]
Al-Saleh M H, Saadeh W H, Sundararaj U. Carbon, 2013, 60: 146.
[31]
Kwon S, Ma R J, Kim U, Choi H R, Baik S. Carbon, 2014, 68: 118.
[32]
Gupta T K, Singh B P, Mathur R B, Dhakate S R. Nanoscale, 2014, 6(2): 842.
[33]
Hong Y K, Lee C Y, Jeong C K, Lee D E, Kim K, Joo J. Rev. Sci. Instrum., 2003, 74(2): 1098.
[34]
Singh A P, Garg P, Alam F, Singh K, Mathur R B, Tandon R P, Chandra A, Dhawan S K. Carbon, 2012, 50(10): 3868.
[35]
Lu S W, Shao J Y, Ma K M, Chen D, Wang X Q, Zhang L, Meng Q S, Ma J. Carbon, 2018, 136: 387.
[36]
Li N, Huang Y, Du F, He X B, Lin X, Gao H J, Ma Y F, Li F F, Chen Y S, Eklund P C. Nano Lett., 2006, 6(6): 1141.
[37]
Wang L, Ma Z L, Zhang Y L, Chen L X, Cao D P, Gu J W. SusMat, 2021, 1(3): 413.
[38]
Jiao Y Z, Cheng S Y, Wu F, Pan X H, Xie A M, Zhu X F, Dong W. Compos. B Eng., 2021, 211: 108643.
[39]
Clark D E, Folz D C, West J K. Mater. Sci. Eng. A, 2000, 287(2): 153.
[40]
Liu S, Qin S H, Jiang Y, Song P G, Wang H. Compos. A Appl. Sci. Manuf., 2021, 145: 106376.
[41]
Gupta A, Choudhary V. Compos. Sci. Technol., 2011, 71(13): 1563.
[42]
Yuan B Q, Yu L M, Sheng L M, An K, Zhao X L. J. Phys. D: Appl. Phys., 2012, 45(23): 235108.
[43]
Saini P, Choudhary V, Singh B P, Mathur R B, Dhawan S K. Mater. Chem. Phys., 2009, 113(2/3): 919.
[44]
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M, Gogotsi Y. Science, 2016, 353(6304): 1137.
[45]
Wei Q W, Pei S F, Qian X T, Liu H P, Liu Z B, Zhang W M, Zhou T Y, Zhang Z C, Zhang X F, Cheng H M, Ren W C. Adv. Mater., 2020, 32(14): 1907411.
[46]
Hwang U, Kim J, Seol M, Lee B, Park I K, Suhr J, Nam J D. ACS Omega, 2022, 7(5): 4135.
[47]
Zhang W B, Wei L F, Ma Z L, Fan Q Q, Ma J Z. Carbon, 2021, 177: 412.
[48]
Lee S, Jo I, Kang S M, Jang B, Moon J, Park J B, Lee S, Rho S, Kim Y, Hong B H. ACS Nano, 2017, 11(6): 5318.
[49]
Xia Y J, Fang J, Li P C, Zhang B M, Yao H Y, Chen J S, Ding J, Ouyang J Y. ACS Appl. Mater. Interfaces, 2017, 9(22): 19001.
[50]
Jung J, Lee H, Ha I, Cho H, Kim K K, Kwon J, Won P, Hong S, Ko S H. ACS Appl. Mater. Interfaces, 2017, 9(51): 44609.
[51]
Arief I, Biswas S, Bose S. ACS Appl. Mater. Interfaces, 2017, 9(22): 19202.
[52]
Lee T W, Lee S E, Jeong Y G. Compos. Sci. Technol., 2016, 131: 77.
[53]
Hsiao S T, Ma C C M, Liao W H, Wang Y S, Li S M, Huang Y C, Yang R B, Liang W F. ACS Appl. Mater. Interfaces, 2014, 6(13): 10667.
[54]
Zhang Y, Huang Y, Chen H H, Huang Z Y, Yang Y, Xiao P S, Zhou Y, Chen Y S. Carbon, 2016, 105: 438.
[55]
Wu Y, Wang Z Y, Liu X, Shen X, Zheng Q B, Xue Q, Kim J K. ACS Appl. Mater. Interfaces, 2017, 9(10): 9059.
[56]
Sun R H, Zhang H B, Liu J, Xie X, Yang R, Li Y, Hong S, Yu Z Z. Adv. Funct. Mater., 2017, 27(45): 1702807.
[57]
Huang Z Y, Chen H H, Huang Y, Ge Z, Zhou Y, Yang Y, Xiao P S, Liang J J, Zhang T F, Shi Q, Li G H, Chen Y S. Adv. Funct. Mater., 2018, 28(2): 1704363.
[58]
Song Q, Ye F, Yin X W, Li W, Li H J, Liu Y S, Li K Z, Xie K Y, Li X H, Fu Q G, Cheng L F, Zhang L T, Wei B Q. Adv. Mater., 2017, 29(31): 1701583.
[59]
Lin S C, Ma C C M, Hsiao S T, Wang Y S, Yang C Y, Liao W H, Li S M, Wang J A, Cheng T Y, Lin C W, Yang R B. Appl. Surf. Sci., 2016, 385: 436.
[60]
Feng S Y, Zhan Z Y, Yi Y, Zhou Z H, Lu C H. Compos. A Appl. Sci. Manuf., 2022, 157: 106907.
[61]
Jia L C, Yan D X, Cui C H, Ji X, Li Z M. Macromol. Mater. Eng., 2016, 301(10): 1232.
[62]
Kuang T R, Chang L Q, Chen F, Sheng Y, Fu D J, Peng X F. Carbon, 2016, 105: 305.
[63]
Lee S H, Kang D, Oh I K. Carbon, 2017, 111: 248.
[64]
Verma P, Saini P, Malik R S, Choudhary V. Carbon, 2015, 89: 308.
[65]
Velhal N, Patil N D, Kulkarni G, Shinde S K, Valekar N J, Barshilia H C, Puri V. J. Alloys Compd., 2019, 777: 627.
[66]
Zhang C H, Lv Q T, Liu Y J, Wang C, Wang Q, Wei H, Liu L J, Li J Q, Dong H X. Polymer, 2021, 224: 123742.
[67]
Wei L F, Ma J Z, Zhang W B, Bai S L, Ren Y J, Zhang L, Wu Y K, Qin J B. Carbon, 2021, 181: 212.
[68]
Chen Z, Yang T, Cheng L, Mu J X. Polymers, 2021, 13(20): 3493.
[69]
Bhawal P, Ganguly S, Das T K, Mondal S, Choudhury S, Das N C. Compos. B Eng., 2018, 134: 46.
[70]
Sharika T, Abraham J, Arif P M, George S C, Kalarikkal N, Thomas S. Compos. B Eng., 2019, 173: 106798.
[71]
Pang H, Xu L, Yan D X, Li Z M. Prog. Polym. Sci., 2014, 39(11): 1908.
[72]
Wang T, Yu W C, Sun W J, Jia L C, Gao J F, Tang J H, Su H J, Yan D X, Li Z M. Compos. Sci. Technol., 2020, 200: 108446.
[73]
Wang Y, Fan Z W, Zhang H, Guo J, Yan D X, Wang S F, Dai K, Li Z M. Mater. Des., 2021, 197: 109222.
[74]
Eswaraiah V, Sankaranarayanan V, Ramaprabhu S. Macromol. Mater. Eng., 2011, 296(10): 894.
[75]
Zhang H M, Zhang G C, Gao Q, Tang M, Ma Z L, Qin J B, Wang M Y, Kim J K. Chem. Eng. J., 2020, 379: 122304.
[76]
Hamidinejad M, Zhao B, Zandieh A, Moghimian N, Filleter T, Park C B. ACS Appl. Mater. Interfaces, 2018, 10(36): 30752.
[77]
Wegst U G K, Bai H, Saiz E, Tomsia A P, Ritchie R O. Nat. Mater., 2015, 14(1): 23.
[78]
Gong S S, Ni H, Jiang L, Cheng Q F. Mater. Today, 2017, 20(4): 210.
[79]
Zhao S, Zhang H B, Luo J Q, Wang Q W, Xu B, Hong S, Yu Z Z. ACS Nano, 2018, 12(11): 11193.
[80]
Zeng Z H, Jin H, Chen M J, Li W W, Zhou L C, Zhang Z. Adv. Funct. Mater., 2016, 26(2): 303.
[81]
Bai H, Chen Y, Delattre B, Tomsia A P, Ritchie R O. Sci. Adv., 2015, 1(11): e1500849.
[82]
Sambyal P, Iqbal A, Hong J, Kim H, Kim M K, Hong S M, Han M K, Gogotsi Y, Koo C M. ACS Appl. Mater. Interfaces, 2019, 11(41): 38046.
[83]
Zhou B, Zhang Z, Li Y L, Han G J, Feng Y Z, Wang B, Zhang D B, Ma J M, Liu C T. ACS Appl. Mater. Interfaces, 2020, 12(4): 4895.
[84]
Wang Z, Cheng Z, Xie L, Hou X L, Fang C Q. Ceram. Int., 2021, 47(4): 5747.
[85]
Xu Y D, Yang Y Q, Yan D X, Duan H J, Zhao G Z, Liu Y Q. ACS Appl. Mater. Interfaces, 2018, 10(22): 19143.
[86]
Chen W, Liu L X, Zhang H B, Yu Z Z. ACS Nano, 2020, 14(12): 16643.
[87]
Wei L F, Ma J Z, Ma L, Zhao C X, Xu M L, Qi Q, Zhang W B, Zhang L, He X, Park C B. Small Methods, 2022, 6(4): 2101510.
[88]
Zhan Y H, Hao X H, Wang L C, Jiang X C, Cheng Y, Wang C Z, Meng Y Y, Xia H S, Chen Z M. ACS Appl. Mater. Interfaces, 2021, 13(12): 14623.
[89]
Zuo S D, Liang Y Y, Yang H Z, Ma X X, Ge S B, Wu Y J, Fei B H, Guo M, Ahamad T, Le H S, Van Le Q, Xia C L. Prog. Org. Coat., 2022, 165: 106736.
[90]
Zeng Z H, Wu N, Wei J J, Yang Y F, Wu T T, Li B, Hauser S B, Yang W D, Liu J R, Zhao S Y. Nano Micro Lett., 2022, 14(1): 1.
[91]
Zhang P, Tian R J, Zhang X, Ding X, Wang Y Y, Xiao C, Zheng K, Liu X L, Chen L, Tian X Y. Compos. B Eng., 2022, 232: 109611.
[92]
Jiang Y Q, Ru X L, Che W B, Jiang Z H, Chen H L, Hou J F, Yu Y M. Compos. B Eng., 2022, 229: 109460.
[93]
Li X L, Sheng M J, Gong S, Wu H, Chen X L, Lu X, Qu J P. Chem. Eng. J., 2022, 430: 132928.
[94]
Lin S, Wang H, Wu F, Wang Q, Bai X, Zu D, Song J, Wang D, Liu Z, Li Z. npj Flex. Electron, 2019, 3(1): 1.
[95]
Liang C B, Ruan K P, Zhang Y L, Gu J W. ACS Appl. Mater. Interfaces, 2020, 12(15): 18023.
[96]
Wu X Y, Han B Y, Zhang H B, Xie X, Tu T X, Zhang Y, Dai Y, Yang R, Yu Z Z. Chem. Eng. J., 2020, 381: 122622.
[97]
Zhu Y, Zhang J, Zheng Y, Huang Z, Feng L, Jiang L. Adv. Funct. Mater., 2006, 16(4): 568.
[98]
Li Q M, Liu H, Zhang S D, Zhang D B, Liu X H, He Y X, Mi L W, Zhang J X, Liu C T, Shen C Y, Guo Z H. ACS Appl. Mater. Interfaces, 2019, 11(24): 21904.
[99]
Wang L, Chen Y, Lin L W, Wang H, Huang X W, Xue H G, Gao J F. Chem. Eng. J., 2019, 362: 89.
[100]
Yang H, Bai S C, Chen T R, Zhang Y, Wang H F, Guo X Z. Mater. Res. Express, 2019, 6(8): 086315.
[101]
Tao Y, Pan D C. Mater. Res. Express, 2019, 6(7): 076430.
[102]
Li T T, Wang Y T, Peng H K, Zhang X F, Shiu B C, Lin J H, Lou C W. Compos. A Appl. Sci. Manuf., 2020, 128: 105685.
[103]
Zhou B, Li Z Y, Li Y L, Liu X H, Ma J M, Feng Y Z, Zhang D B, He C G, Liu C T, Shen C Y. Compos. Sci. Technol., 2021, 201: 108531.
[104]
Mu S P, Xie H Y, Wang W, Yu D. Appl. Surf. Sci., 2015, 353: 608.
[105]
Zhu M, Yan X X, Lei Y T, Guo J H, Xu Y J, Xu H L, Dai L, Kong L. ACS Appl. Mater. Interfaces, 2022, 14(12): 14520.
[106]
Jiao Y, Wan C C, Zhang W B, Bao W H, Li J. Nanomaterials, 2019, 9(3): 460.
[107]
Kang S, Herzberg M, Rodrigues D F, Elimelech M. Langmuir, 2008, 24(13): 6409.
[108]
Yan J, Jeong Y G. Appl. Phys. Lett., 2014, 105(5): 051907.
[109]
Wang Z G, Yang Y L, Zheng Z L, Lan R T, Dai K, Xu L, Huang H D, Tang J H, Xu J Z, Li Z M. Compos. Sci. Technol., 2020, 194: 108190.
[110]
Guo Y Q, Qiu H, Ruan K P, Zhang Y L, Gu J W. Nano Micro Lett., 2022, 14(1): 1.
[111]
Zhao B, Ma Z L, Sun Y Y, Han Y X, Gu J W. Small Struct., 2022, 3(10): 2200162.
[112]
Li Z W, Lin Z J, Han M S, Mu Y B, Yu P P, Zhang Y L, Yu J. Chem. Eng. J., 2021, 420: 129826.
[113]
Zhao B, Bai P W, Yuan M Y, Yan Z K, Fan B B, Zhang R, Che R C. Carbon, 2022, 197: 570.
[114]
Xing D, Rana M, Hao B, Zheng Q B, Ma P C. Electrochimica Acta, 2022, 427: 140847.
[115]
Wang Z X, Jiao B, Qing Y C, Nan H Y, Huang L Q, Wei W, Peng Y, Yuan F, Dong H, Hou X, Wu Z X. ACS Appl. Mater. Interfaces, 2020, 12(2): 2826.
[116]
Wang L, Ma Z L, Qiu H, Zhang Y L, Yu Z, Gu J W. Nano Micro Lett., 2022, 14(1): 1.
[117]
Song P, Liu B, Liang C B, Ruan K P, Qiu H, Ma Z L, Guo Y Q, Gu J W. Nano Micro Lett., 2021, 13(1): 1.

Funding

National Natural Science Foundation of China(21908141)
National Natural Science Foundation of China(52073164)
Key Research and Development Program of Shaanxi Province(2019GY-171)
Zhejiang Provincial Basic Public Welfare Research Plan Project(LGG21E030003)
PDF(10085 KB)

Accesses

Citation

Detail

Sections
Recommended

/