High Voltage Electrolytes for Lithium Batteries

Qimeng Ren, Qinglei Wang, Yinwen Li, Xuesheng Song, Xuehui Shangguan, Faqiang Li

Prog Chem ›› 2023, Vol. 35 ›› Issue (7) : 1077-1096.

PDF(26096 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(26096 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (7) : 1077-1096. DOI: 10.7536/PC221132
Review

High Voltage Electrolytes for Lithium Batteries

Author information +
History +

Abstract

With the proposal of "peak carbon dioxide emissions" and "carbon neutral" strategic objectives, developing clean energy and promoting the development of new energy industry has become the consensus of the whole society. Lithium battery as the candidate for new generation of energy storage equipment due to its remarkable advantages such as high energy density, high power density, long cycle life and environmental friendliness. Its development plays a significant role in alleviating energy crisis, driving the conversion of old kinetic energy into new and achieving the strategic goal of "carbon peaking and carbon neutrality". In order to further improve the energy density of lithium batteries, the most effective strategy is to use high voltage or high specific capacity cathode materials. However, due to the low oxidation stability and narrow electrochemical window of traditional carbonate ester electrolytes, they are prone to oxidative decomposition when the working voltage exceeds 4.2 V, which cannot be cycled stably at high voltages, so it is particularly important to broaden the electrochemical window of electrolytes. This paper mainly discusses the mechanism of organic solvents and additives in high-voltage electrolytes, explores effective methods to broaden the electrochemical window of new electrolytes, summarizes the characteristics of aqueous electrolytes, solid electrolytes, and polymer gel electrolytes, and finally; summarizes and outlooks the future development and prospects of high-voltage electrolytes to provide scientific basis for the design and development of high-voltage electrolytes for lithium batteries.

Contents

1 Introduction

2 Working mechanism of high voltage electrolyte

3 Research progress on the high-voltage electrolyte for lithium batteries

3.1 New electrolyte organic solvents

3.2 High voltage electrolyte additive

3.3 Aqueous electrolyte

3.4 Solid state electrolyte

3.5 Gel polymer electrolyte

4 Conclusion and outlook

Key words

lithium battery / high voltage / electrochemistry / electrolytes / solvents / additive

Cite this article

Download Citations
Qimeng Ren , Qinglei Wang , Yinwen Li , et al . High Voltage Electrolytes for Lithium Batteries[J]. Progress in Chemistry. 2023, 35(7): 1077-1096 https://doi.org/10.7536/PC221132

References

[1]
Feng D J, Chen S M, Wang R M, Chen T H, Gu S J, Su J L, Dong T, Liu Y W. J. Electrochem. Soc., 2020, 167(11): 110544.
[2]
Cao X, Zou L F, Matthews B E, Zhang L C, He X Z, Ren X D, Engelhard M H, Burton S D, El-Khoury P Z, Lim H S, Niu C J, Lee H, Wang C S, Arey B W, Wang C M, Xiao J, Liu J, Xu W, Zhang J G. Energy Storage Mater., 2021, 34: 76.
[3]
Li G X. Adv. Energy Mater., 2021, 11(7): 2002891.
[4]
Yang H C, Li J, Sun Z H, Fang R P, Wang D W, He K, Cheng H M, Li F. Energy Storage Mater., 2020, 30: 113.
[5]
Mao S L, Wu Q, Ma F Y, Zhao Y, Wu T, Lu Y Y. Chem. Commun., 2021, 57(7): 840.
[6]
Lin D C, Liu Y Y, Cui Y. Nat. Nanotechnol., 2017, 12(3): 194.
[7]
Yan S X, Wang Y L, Chen T H, Gan Z D, Chen S M, Liu Y W, Zhang S J. J. Power Sources, 2021, 491: 229603.
[8]
Zhang J Y, Yao X H, Misra R K, Cai Q, Zhao Y L. J. Mater. Sci. Technol., 2020, 44: 237.
[9]
Cheng X B, Zhang R, Zhao C Z, Zhang Q. Chem. Rev., 2017, 117(15): 10403.
[10]
Doi T, Hashinokuchi M, Inaba M. Curr. Opin. Electrochem., 2018, 9: 49.
[11]
Guo K L, Qi S H, Wang H P, Huang J D, Wu M G, Yang Y L, Li X, Ren Y R, Ma J M. Small Sci., 2022, 2(5): 2100107.
[12]
Wang J H, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y, Yamada A. Nat. Commun., 2016, 7: 12032.
[13]
Goodenough J B, Kim Y. Chem. Mater., 2010, 22(3): 587.
[14]
Tong B, Song Z Y, Wan H H, Feng W F, Armand M, Liu J C, Zhang H, Zhou Z B. InfoMat, 2021, 3(12): 1364.
[15]
Wu W Y, Bai Y, Wang X R, Wu C. Chin. Chemical Lett., 2021, 32(4): 1309.
[16]
Shao N, Sun X G, Dai S, Jiang D E. J. Phys. Chem. B, 2011, 115(42): 12120.
[17]
Tan S, Ji Y J, Zhang Z R, Yang Y. ChemPhysChem, 2014, 15(10): 1956.
[18]
Janssen P, Schmitz R, Müller R, Isken P, Lex-Balducci A, Schreiner C, Winter M, Cekić-Lasković I, Schmitz R. Electrochimica Acta, 2014, 125: 101.
[19]
Jurng S, Brown Z L, Kim J, Lucht B L. Energy Environ. Sci., 2018, 11(9): 2600.
[20]
Zuo X X, Deng X, Ma X D, Wu J H, Liang H Y, Nan J M. J. Mater. Chem. A, 2018, 6(30): 14725.
[21]
Drozhzhin O A, Shevchenko V A, Zakharkin M V, Gamzyukov P I, Yashina L V, Abakumov A M, Stevenson K J, Antipov E V. Electrochimica Acta, 2018, 263: 127.
[22]
Shao N, Sun X G, Dai S, Jiang D E. J. Phys. Chem. B, 2012, 116(10): 3235.
[23]
Zhao H J, Yu X Q, Li J D, Li B, Shao H Y, Li L, Deng Y H. J. Mater. Chem. A, 2019, 7(15): 8700.
[24]
Qin Z M, Hong B, Duan B Y, Hong S, Chen Y C, Lai Y Q, Feng J. Electrochimica Acta, 2018, 276: 412.
[25]
Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135(4): 1167.
[26]
Dong Y N, Young B T, Zhang Y Z, Yoon T, Heskett D R, Hu Y F, Lucht B L. ACS Appl. Mater. Interfaces, 2017, 9(24): 20467.
[27]
Xu M Q, Zhou L, Dong Y N, Chen Y J, Demeaux J, MacIntosh A D, Garsuch A, Lucht B L. Energy Environ. Sci., 2016, 9(4): 1308.
[28]
Kazzazi A, Bresser D, Kuenzel M, Hekmatfar M, Schnaidt J, Jusys Z, Diemant T, Behm R J, Copley M, Maranski K, Cookson J, de Meatza I, Axmann P, Wohlfahrt-Mehrens M, Passerini S. J. Power Sources, 2021, 482: 228975.
[29]
Li X, Liu J D, He J, Qi S H, Wu M G, Wang H P, Jiang G X, Huang J D, Wu D X, Li F, Ma J M. Adv. Sci., 2022, 9(20): 2201297.
[30]
Ji W X, Huang H, Zheng D, Zhang X X, Ding T Y, Lambert T H, Qu D Y. Energy Storage Mater., 2020, 32: 185.
[31]
Zhang S S. J. Power Sources, 2006, 162(2): 1379.
[32]
Zhang H, Eshetu G G, Judez X, Li C M, Rodriguez-Martínez L M, Armand M. Angewandte Chemie Int. Ed., 2018, 57(46): 15002.
[33]
Kim K, Ma H, Park S, Choi N S. ACS Energy Lett., 2020, 5(5): 1537.
[34]
Sun X G, Wan S, Guang H Y, Fang Y X, Reeves K S, Chi M F, Dai S. J. Mater. Chem. A, 2017, 5(3): 1233.
[35]
Younesi R, Veith G M, Johansson P, Edström K, Vegge T. Energy Environ. Sci., 2015, 8(7): 1905.
[36]
Wang C, Wang T, Wang L L, Hu Z L, Cui Z L, Li J D, Dong S M, Zhou X H, Cui G L. Adv. Sci., 2019, 6(22): 1901036.
[37]
Roy B, Cherepanov P, Nguyen C, Forsyth C, Pal U, Mendes T C, Howlett P, Forsyth M, MacFarlane D, Kar M. Adv. Energy Mater., 2021, 11(36): 2101422.
[38]
Chen X, Usrey M, Peña-Hueso A, West R, Hamers R J. J. Power Sources, 2013, 241: 311.
[39]
Qian Q L, Yang Y F, Shao H X. Phys. Chem. Chem. Phys., 2017, 19(42): 28772.
[40]
Zhang Y J, Wu Y, Li H Y, Chen J H, Lei D N, Wang C X. Nat. Commun., 2022, 13: 1297.
[41]
Cao X, Ren X D, Zou L F, Engelhard M H, Huang W, Wang H S, Matthews B E, Lee H, Niu C J, Arey B W, Cui Y, Wang C M, Xiao J, Liu J, Xu W, Zhang J G. Nat. Energy, 2019, 4(9): 796.
[42]
Zeng Z Q, Murugesan V, Han K S, Jiang X Y, Cao Y L, Xiao L F, Ai X P, Yang H X, Zhang J G, Sushko M L, Liu J. Nat. Energy, 2018, 3(8): 674.
[43]
Zou Y G, Shen Y B, Wu Y Q, Xue H J, Guo Y J, Liu G, Wang L M, Ming J. Chem. Eur. J., 2020, 26(35): 7930.
[44]
Yamada Y, Wang J H, Ko S, Watanabe E, Yamada A. Nat. Energy, 2019, 4(4): 269.
[45]
Zheng J M, Lochala J A, Kwok A, Deng Z D, Xiao J. Adv. Sci., 2017, 4(8): 1700032.
[46]
Lin S S, Hua H M, Lai P B, Zhao J B. Adv. Energy Mater, 2021, 11(36): 2101775.
[47]
Ma G Q, Wang L, He X M, Zhang J J, Chen H C, Xu W G, Ding Y S. ACS Appl. Energy Mater., 2018, 1(10): 5446.
[48]
Wang W, Zhang J L, Yang Q, Wang S W, Wang W H, Li B H. ACS Appl. Mater. Interfaces, 2020, 12(20): 22901.
[49]
Perez Beltran S, Cao X, Zhang J G, Balbuena P B. Chem. Mater., 2020, 32(14): 5973.
[50]
Ren X D, Zou L F, Cao X, Engelhard M H, Liu W, Burton S D, Lee H, Niu C J, Matthews B E, Zhu Z H, Wang C M, Arey B W, Xiao J, Liu J, Zhang J G, Xu W. Joule, 2019, 3(7): 1662.
[51]
Yamada Y, Yamada A. J. Electrochem. Soc., 2015, 162(14): A2406.
[52]
Chang C Y, Yao Y, Li R R, Cong Z F, Li L W, Guo Z H, Hu W G, Pu X. J. Mater. Chem. A, 2022, 10(16): 9001.
[53]
Xu K. Chem. Rev., 2014, 114(23): 11503.
[54]
Xiang J, Wu F, Chen R J, Li L, Yu H G. J. Power Sources, 2013, 233: 115.
[55]
Fan X L, Wang C S. Chem. Soc. Rev., 2021, 50(18): 10486.
[56]
Sun X G, Angell C A. Electrochem. Commun., 2005, 7(3): 261.
[57]
Sun X G, Austen Angell C. Solid State Ionics, 2004, 175(1): 257.
[58]
Sun X G, Angell C A. Electrochem. Commun., 2009, 11(7): 1418.
[59]
Xue L G, Ueno K, Lee S Y, Angell C A. J. Power Sources, 2014, 262: 123.
[60]
Su C C, He M N, Redfern P C, Curtiss L A, Shkrob I A, Zhang Z C. Energy Environ. Sci., 2017, 10(4): 900.
[61]
Dong L W, Liu Y P, Chen D J, Han Y P, Ji Y P, Liu J P, Yuan B T, Dong Y F, Li Q, Zhou S Y, Zhong S J, Liang Y F, Yang M Q, Yang C H, He W D. Energy Storage Mater., 2022, 44: 527.
[62]
Zheng Q F, Li G J, Zheng X W, Xing L D, Xu K, Li W S. Energy Environ. Mater., 2022, 5(3): 906.
[63]
Wu F, Xiang J, Li L, Chen J Z, Tan G Q, Chen R J. J. Power Sources, 2012, 202: 322.
[64]
Hu L B, Zhang Z C, Amine K. Electrochem. Commun., 2013, 35: 76.
[65]
Holoubek J, Yu M Y, Yu S C, Li M Q, Wu Z H, Xia D W, Bhaladhare P, Gonzalez M S, Pascal T A, Liu P, Chen Z. ACS Energy Lett., 2020, 5(5): 1438.
[66]
Markevich E, Salitra G, Fridman K, Sharabi R, Gershinsky G, Garsuch A, Semrau G, Schmidt M A, Aurbach D. Langmuir, 2014, 30(25): 7414.
[67]
Zhang Z C, Hu L B, Wu H M, Weng W, Koh M, Redfern P C, Curtiss L A, Amine K. Energy Environ. Sci., 2013, 6(6): 1806.
[68]
Fu C K, Ma Y L, Lou S F, Cui C, Xiang L Z, Zhao W, Zuo P J, Wang J J, Gao Y Z, Yin G P. J. Mater. Chem. A, 2020, 8(4): 2066.
[69]
Kim Y S, Lee S H, Son M Y, Jung Y M, Song H K, Lee H. ACS Appl. Mater. Interfaces, 2014, 6(3): 2039.
[70]
Zhang Q Q, Liu K, Ding F, Li W, Liu X J, Zhang J L. Electrochimica Acta, 2019, 298: 818.
[71]
Fu F, Liu Y, Sun C, Cong L N, Liu Y L, Sun L Q, Xie H M. Energy Environ. Mater., 2023, 6(3): e12367.
[72]
Zhang Q Q, Liu K, Ding F, Li W, Liu X J, Zhang J L. ACS Appl. Mater. Interfaces, 2017, 9(35): 29820.
[73]
Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. J. Am. Chem. Soc., 2014, 136(13): 5039.
[74]
Li S P, Fang S, Li Z W, Chen W Y, Dou H, Zhang X G. Batter. Supercaps, 2022, 5(4): e202100416.
[75]
Amanchukwu C V, Yu Z A, Kong X, Qin J, Cui Y, Bao Z N. J. Am. Chem. Soc., 2020, 142(16): 7393.
[76]
Holoubek J, Yan Q Z, Liu H D, Hopkins E J, Wu Z H, Yu S C, Luo J, Pascal T A, Chen Z, Liu P. ACS Energy Lett., 2022, 7(2): 675.
[77]
Jiao S H, Ren X D, Cao R G, Engelhard M H, Liu Y Z, Hu D H, Mei D H, Zheng J M, Zhao W G, Li Q Y, Liu N, Adams B D, Ma C, Liu J, Zhang J G, Xu W. Nat. Energy, 2018, 3(9): 739.
[78]
Zhao Y, Zhou T H, El Kazzi M, Coskun A. ACS Appl. Energy Mater., 2022, 5(6): 7784.
[79]
Xia M, Lin M, Liu G P, Cheng Y, Jiao T P, Fu A, Yang Y, Wang M S, Zheng J M. Chem. Eng. J., 2022, 442: 136351.
[80]
Horiuchi S, Zhu H J, Forsyth M, Takeoka Y, Rikukawa M, Yoshizawa-Fujita M. Electrochimica Acta, 2017, 241: 272.
[81]
Hu M, Pang X L, Zhou Z. J. Power Sources, 2013, 237: 229.
[82]
Dong L, Liang F X, Wang D, Zhu C Z, Liu J H, Gui D Y, Li C H. Electrochimica Acta, 2018, 270: 426.
[83]
Yong T Q, Zhang L Z, Wang J L, Mai Y J, Yan X D, Zhao X Y. J. Power Sources, 2016, 328: 397.
[84]
Li H F, Pang J, Yin Y P, Zhuang W D, Wang H, Zhai C X, Lu S G. RSC Adv., 2013, 3(33): 13907.
[85]
Lombardo L, Brutti S, Navarra M A, Panero S, Reale P. J. Power Sources, 2013, 227: 8.
[86]
Li F, Liu J D, He J, Hou Y Y, Wang H P, Wu D X, Huang J D, Ma J M. Angewandte Chemie Int. Ed., 2022, 61(27): e202205091.
[87]
Hu Y S, Kong W H, Li H, Huang X J, Chen L Q. Electrochem. Commun., 2004, 6(2): 126.
[88]
Lee S Y, Park Y J. ACS Omega, 2020, 5(7): 3579.
[89]
Liu Y L, Hamam I, Dahn J R. J. Electrochem. Soc., 2020, 167(11): 110527.
[90]
Michan A L, Parimalam B S, Leskes M, Kerber R N, Yoon T, Grey C P, Lucht B L. Chem. Mater., 2016, 28(22): 8149.
[91]
El Ouatani L, Dedryvere R, Siret C, Biensan P, Reynaud S, Iratcabal P, Gonbeau D. J. Electrochem. Soc., 2009, 156(2): A103.
[92]
Tornheim A, He M N, Su C C, Zhang Z C. J. Electrochem. Soc., 2017, 164(1): A6366.
[93]
Xia J, Dahn J R. J. Power Sources, 2016, 324: 704.
[94]
Burns J C, Petibon R, Nelson K J, Sinha N N, Kassam A, Way B M, Dahn J R. J. Electrochem. Soc., 2013, 160(10): A1668.
[95]
Petibon R, Xia J, Ma L, Bauer M K G, Nelson K J, Dahn J R. J. Electrochem. Soc., 2016, 163(13): A2571.
[96]
Xia J, Aiken C P, Ma L, Kim G Y, Burns J C, Chen L P, Dahn J R. J. Electrochem. Soc., 2014, 161(6): A1149.
[97]
Haregewoin A M, Wotango A S, Hwang B J. Energy Environ. Sci., 2016, 9(6): 1955.
[98]
Zhang B D, Wang L L, Wang X T, Zhou S Y, Fu A, Yan Y W, Wang Q S, Xie Q S, Peng D L, Qiao Y, Sun S G. Energy Storage Mater., 2022, 53: 492.
[99]
Wang X T, Gu Z Y, Li W H, Zhao X X, Guo J Z, Du K D, Luo X X, Wu X L. Chem. Asian J., 2020, 15(18): 2803.
[100]
Liu Q Y, Yang G J, Liu S, Han M, Wang Z X, Chen L Q. ACS Appl. Mater. Interfaces, 2019, 11(19): 17435.
[101]
Zuo X X, Fan C J, Liu J S, Xiao X, Wu J H, Nan J M. J. Power Sources, 2013, 229: 308.
[102]
Shim E G, Nam T H, Kim J G, Kim H S, Moon S I. Electrochimica Acta, 2009, 54(8): 2276.
[103]
Zhu Y M, Luo X Y, Zhi H Z, Liao Y H, Xing L D, Xu M Q, Liu X, Xu K, Li W S. J. Mater. Chem. A, 2018, 6(23): 10990.
[104]
Sun H H, Liu J D, He J, Wang H P, Jiang G X, Qi S H, Ma J M. Sci. Bull., 2022, 67(7): 725.
[105]
Han J G, Park I, Cha J, Park S, Park S, Myeong S, Cho W, Kim S S, Hong S Y, Cho J, Choi N S. ChemElectroChem, 2017, 4(1): 3.
[106]
Liang X, Huang J, Zheng Y, Shi P C, Sun Y, Xiang H F. Electrochimica Acta, 2019, 316: 228.
[107]
Zhang H P, Xia Q, Wang B, Yang L C, Wu Y P, Sun D L, Gan C L, Luo H J, Bebeda A W, van Ree T. Electrochem. Commun., 2009, 11(3): 526.
[108]
Tu W Q, Ye C C, Yang X R, Xing L D, Liao Y H, Liu X, Li W S. J. Power Sources, 2017, 364: 23.
[109]
Peebles C, Sahore R, Gilbert J A, Garcia J C, Tornheim A, Bareño J, Iddir H, Liao C, Abraham D P. J. Electrochem. Soc., 2017, 164(7): A1579.
[110]
Park S, Jeong S Y, Lee T K, Park M W, Lim H Y, Sung J, Cho J, Kwak S K, Hong S Y, Choi N S. Nat. Commun., 2021, 12: 838.
[111]
Chen H Y, Chen J W, Zhang W G, Xie Q M, Che Y X, Wang H R, Xing L D, Xu K, Li W S. J. Mater. Chem. A, 2020, 8(42): 22054.
[112]
Liu Y C, Hong L, Jiang R, Wang Y D, Patel S V, Feng X Y, Xiang H F. ACS Appl. Mater. Interfaces, 2021, 13(48): 57430.
[113]
Yang T X, Zeng H N, Wang W L, Zhao X Y, Fan W Z, Wang C Y, Zuo X X, Zeng R H, Nan J M. J. Mater. Chem. A, 2019, 7(14): 8292.
[114]
Fan X L, Ji X, Han F D, Yue J, Chen J, Chen L, Deng T, Jiang J J, Wang C S. Sci. Adv., 2018, 4(12): eaau9245.
[115]
Beichel W, Klose P, Blattmann H, Hoecker J, Kratzert D, Krossing I. ChemElectroChem, 2018, 5(10): 1415.
[116]
Shi P C, Liu F F, Feng Y Z, Zhou J F, Rui X H, Yu Y. Small, 2020, 16(30): 2001989.
[117]
Xu N B, Shi J W, Liu G P, Yang X R, Zheng J M, Zhang Z R, Yang Y. J. Power Sources Adv., 2021, 7: 100043.
[118]
Zhang X Q, Cheng X B, Chen X, Yan C, Zhang Q. Adv. Funct. Mater., 2017, 27(10): 1605989.
[119]
Chen J W, Xing L D, Yang X R, Liu X, Li T J, Li W S. Electrochimica Acta, 2018, 290: 568.
[120]
Zhao D N, Wang P, Cui X L, Mao L P, Li C L, Li S Y. Electrochimica Acta, 2018, 260: 536.
[121]
Zhao W M, Ji Y J, Zhang Z R, Lin M, Wu Z L, Zheng X, Li Q, Yang Y. Curr. Opin. Electrochem., 2017, 6(1): 84.
[122]
Pires J, Timperman L, Castets A, Santos Peña J, Dumont E, Levasseur S, Dedryvère R, Tessier C, Anouti M. RSC Adv., 2015, 5(52): 42088.
[123]
Huang Y G, Li Y, Tan C L, Huang Z K, Pan Q C, Chu Y Q, Zheng F H, Wang H Q, Li Q Y. ACS Appl. Energy Mater., 2022, 5(1): 639.
[124]
Li B, Wang Y Q, Tu W Q, Wang Z S, Xu M Q, Xing L D, Li W S. Electrochimica Acta, 2014, 147: 636.
[125]
Jankowski P, Lindahl N, Weidow J, Wieczorek W, Johansson P. ACS Appl. Energy Mater., 2018, 1(6): 2582.
[126]
Xia J, Petibon R, Sinha N N, Dahn J R. J. Electrochem. Soc., 2015, 162(12): A2227.
[127]
Wang Z S, Rao M M, Li J H, Ye C C, Liu Z D, Xu Q S, Jin X J, Du R A, Xie Q M, Luo W, Li W S, Qiu Y C. J. Electroanal. Chem., 2019, 851: 113411.
[128]
Hong P B, Xu M Q, Liao B, Wu Y N, Lin N N, Huang Q M, Li W S. J. Electrochem. Soc., 2017, 164(13): A2914.
[129]
Hong P B, Xu M Q, Chen D R, Chen X Q, Xing L D, Huang Q M, Li W S. J. Electrochem. Soc., 2016, 164(2): A137.
[130]
Shi X T, Zheng T L, Xiong J W, Zhu B Y, Cheng Y J, Xia Y G. ACS Appl. Mater. Interfaces, 2021, 13(48): 57107.
[131]
Peng Z, Cao X, Gao P Y, Jia H P, Ren X D, Roy S, Li Z D, Zhu Y, Xie W P, Liu D Y, Li Q Y, Wang D Y, Xu W, Zhang J G. Adv. Funct. Mater., 2020, 30(24): 2001285.
[132]
Han S Y, Zhang H, Fan C J, Fan W Z, Yu L. Solid State Ion., 2019, 337: 63.
[133]
Chen X, Zhang Q. Acc. Chem. Res., 2020, 53(9): 1992.
[134]
Tan J F, Liu J P. ENERGY ENVIRONMENTAL Mater., 2021, 4(3): 302.
[135]
Zhang H, Liu X, Li H H, Hasa I, Passerini S. Angewandte Chemie Int. Ed., 2021, 60(2): 598.
[136]
Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S, Xu K. Science, 2015, 350(6263): 938.
[137]
Yamada Y, Usui K, Sodeyama K, Ko S, Tateyama Y, Yamada A. Nat. Energy, 2016, 1(10): 16129.
[138]
Cui G L. Matter, 2020, 2(4): 805.
[139]
Lu Y, Zhao C Z, Yuan H, Cheng X B, Huang J Q, Zhang Q. Adv. Funct. Mater., 2021, 31(18): 2009925.
[140]
Duan H, Chen W P, Fan M, Wang W P, Yu L, Tan S J, Chen X, Zhang Q, Xin S, Wan L J, Guo Y G. Angew. Chem., 2020, 132(29): 12167.
[141]
Kim T, Song W T, Son D Y, Ono L K, Qi Y B. J. Mater. Chem. A, 2019, 7(7): 2942.
[142]
Zhao N, Khokhar W, Bi Z J, Shi C, Guo X X, Fan L Z, Nan C W. Joule, 2019, 3(5): 1190.
[143]
Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A. Nat. Mater., 2011, 10(9): 682.
[144]
Zhao F P, Liang J W, Yu C, Sun Q, Li X N, Adair K, Wang C H, Zhao Y, Zhang S M, Li W H. Adv. Energy Mater., 2020, 10(9): 1903422.
[145]
Hao X G, Zhao Q, Su S M, Zhang S Q, Ma J B, Shen L, Yu Q P, Zhao L, Liu Y, Kang F Y, He Y B. Adv. Energy Mater., 2019, 9(34): 1901604.
[146]
Huo H Y, Chen Y, Zhao N, Lin X T, Luo J, Yang X F, Liu Y L, Guo X X, Sun X L. Nano Energy, 2019, 61: 119.
[147]
Luo W, Gong Y H, Zhu Y Z, Li Y J, Yao Y G, Zhang Y, Fu K, Pastel G, Lin C F, Mo Y F, Wachsman E D, Hu L B. Adv. Mater., 2017, 29(22): 1606042.
[148]
Qiu J L, Liu X Y, Chen R S, Li Q H, Wang Y, Chen P H, Gan L Y, Lee S J, Nordlund D, Liu Y J, Yu X Q, Bai X D, Li H, Chen L Q. Adv. Funct. Mater., 2020, 30(22): 1909392.
[149]
Homann G, Stolz L, Neuhaus K, Winter M, Kasnatscheew J. Adv. Funct. Mater., 2020, 30(46): 2006289.
[150]
Li S, Chen Y M, Liang W F, Shao Y F, Liu K W, Nikolov Z, Zhu Y. Joule, 2018, 2(9): 1838.
[151]
Zhou W D, Wang S F, Li Y T, Xin S, Manthiram A, Goodenough J B. J. Am. Chem. Soc., 2016, 138(30): 9385.
[152]
Zhang X K, Xie J, Shi F F, Lin D C, Liu Y Y, Liu W, Pei A, Gong Y J, Wang H X, Liu K, Xiang Y, Cui Y. Nano Lett., 2018, 18(6): 3829.
[153]
Chen S M, Wen K H, Fan J T, Bando Y, Golberg D. J. Mater. Chem. A, 2018, 6(25): 11631.
[154]
Lv Z L, Zhou Q, Zhang S, Dong S M, Wang Q L, Huang L, Chen K, Cui G L. Energy Storage Mater., 2021, 37: 215.
[155]
Pan K C, Zhang L, Qian W W, Wu X K, Dong K, Zhang H T, Zhang S J. Adv. Mater., 2020, 32(17): 2000399.
[156]
Song X F, Zhang Y N, Ye Y W, Liu Z F, Cheng F, Li H R. ACS Appl. Energy Mater., 2020, 3(5): 4906.
[157]
Zheng Y W, Li X W, Fullerton W R, Qian Q, Shang M W, Niu J J, Li C Y. ACS Appl. Energy Mater., 2021, 4(6): 5639.

Funding

National Natural Science Foundation of China(22209065)
National Natural Science Foundation of China(22172070)
Natural Science Foundation of Shandong Province(ZR2021QE039)
Natural Science Foundation of Shandong Province(ZR2021QE149)
Natural Science Foundation of Shandong Province(ZR2020MB082)
Key R&D Plan of Linyi City(2021019zkt)
2022 Shandong Province Higher Education Youth Innovation Team Development Plan
PDF(26096 KB)

Accesses

Citation

Detail

Sections
Recommended

/