Nano-State Layered Double Hydroxides Based Materials for Photo-Driven C1 Chemical Conversion

Chi Duan, Zhenhua Li, Tierui Zhang

Prog Chem ›› 2023, Vol. 35 ›› Issue (6) : 940-953.

PDF(20263 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(20263 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (6) : 940-953. DOI: 10.7536/PC221216
Review

Nano-State Layered Double Hydroxides Based Materials for Photo-Driven C1 Chemical Conversion

Author information +
History +

Abstract

Energy is the basic guarantee for human survival. As an important reaction in field of energy, C1 chemical conversion has safeguarded the development of human society. With the proposal of "double carbon" goal, energy saving-emission reduction and environmental friendliness have been the new pursuit of C1 catalytic conversion researchers. Recently, photo-driven C1 chemical conversion has attracted researchers’ attention through which C1 small molecules can be transformed into various value-added products under ambient condition. Layered double hydroxides (LDH) have gained wide application in photo-driven C1 chemical conversion for their distinctive two-dimensional layered structure. Herein, we review the latest progress achieved in nano-state LDH based materials for photo-driven C1 chemical conversion from three aspects containing LDH precursors acting as catalyst, LDH derivatives acting as catalyst and LDH acting as catalyst carrier, and conclude the challenges this field may face in the future. Through analyzing and discussing above-mentioned work, we hope to offer researchers some inspiration on photo-driven C1 chemistry.

Contents

1 Introduction

2 A brief introduction of LDH

2.1 Structural composition of LDH

2.2 Basic properties of LDH

3 Application of LDH based materials in photo-driven C1conversion

3.1 LDH precursors as catalyst

3.2 LDH derivatives as catalyst

3.3 LDH as catalyst carrier

4 Conclusion and outlook

Key words

C1 chemical conversion / LDH / photo-driven / valve-added chemicals

Cite this article

Download Citations
Chi Duan , Zhenhua Li , Tierui Zhang. Nano-State Layered Double Hydroxides Based Materials for Photo-Driven C1 Chemical Conversion[J]. Progress in Chemistry. 2023, 35(6): 940-953 https://doi.org/10.7536/PC221216

References

[1]
Khodakov A Y, Chu W, Fongarland P. Chem. Rev., 2007, 107(5): 1692.
[2]
Pakhare D, Spivey J. Chem. Soc. Rev., 2014, 43(22): 7813.
[3]
Kondratenko E V, Mul G, Baltrusaitis J, Larrazábal G O, PÉrez-Ramírez J. Energy Environ. Sci., 2013, 6(11): 3112.
[4]
Bulushev D A, Ross J R H. ChemSusChem, 2018, 11(5): 821.
[5]
Schwach P, Pan X L, Bao X H. Chem. Rev., 2017, 117(13): 8497.
[6]
Haynes A, Maitlis P M, Morris G E, Sunley G J, Adams H, Badger P W, Bowers C M, Cook D B, Elliott P I P, Ghaffar T, Green H, Griffin T R, Payne M, Pearson J M, Taylor M J, Vickers P W, Watt R J. J. Am. Chem. Soc., 2004, 126(9): 2847.
[7]
Song H, Ye J H. Chem, 2022, 8(5): 1181.
[8]
Song C Q, Liu X, Xu M, Masi D, Wang Y G, Deng Y C, Zhang M T, Qin X T, Feng K, Yan J, Leng J, Wang Z H, Xu Y, Yan B H, Jin S Y, Xu D S, Yin Z, Xiao D Q, Ma D. ACS Catal., 2020, 10(18): 10364.
[9]
Wang Y B, Zhao J, Li Y X, Wang C Y. Appl. Catal. B: Environ., 2018, 226: 544.
[10]
Long R, Li Y, Liu Y, Chen S M, Zheng X S, Gao C, He C H, Chen N S, Qi Z M, Song L, Jiang J, Zhu J F, Xiong Y J. J. Am. Chem. Soc., 2017, 139(12): 4486.
[11]
Zhang W Q, Fu C F, Low J, Duan D L, Ma J, Jiang W B, Chen Y H, Liu H J, Qi Z M, Long R, Yao Y F, Li X B, Zhang H, Liu Z, Yang J L, Zou Z G, Xiong Y J. Nat. Commun., 2022, 13: 2806.
[12]
Ma J, Low J, Wu D, Gong W B, Liu H J, Liu D, Long R, Xiong Y J. Nanoscale Horiz., 2023, 8(1): 63.
[13]
Sideris P J, Nielsen U G, Gan Z H, Grey C P. Science, 2008, 321(5885): 113.
[14]
Guo X X, Zhang F Z, Evans D G, Duan X. Chem. Commun., 2010, 46(29): 5197.
[15]
Leroux F, Besse J P. Chem. Mater., 2001, 13(10): 3507.
[16]
Vaccari A. Layered Double Hydroxides: Present and Future,Rives V. (Ed.), New York: Nova Science Publishers, Inc., 2001.
[17]
Rives V, Angeles Ulibarri M. Coord. Chem. Rev., 1999, 181(1): 61.
[18]
Wang Q, O’Hare D. Chem. Rev., 2012, 112(7): 4124.
[19]
Gabrovska M, Ivanov I, Nikolova D, Kovacheva D, Tabakova T. Int. J. Hydrog. Energy, 2021, 46(1): 458.
[20]
Jing C, Zhang Q, Liu X Y, Chen Y X, Wang X, Xia L H, Zeng H, Wang D C, Zhang W Z, Dong F. RSC Adv., 2019, 9(17): 9604.
[21]
Yang J S, Li C, Liang D R, Liu Y, Li Z S, Wang H Y, Huang H H, Xia C F, Zhao H, Liu Y Y, Zhang Q, Meng Z L. J. Colloid Interface. Sci., 2021, 590: 571.
[22]
Chen G B, Gao R, Zhao Y F, Li Z H, Waterhouse G I N, Shi R, Zhao J Q, Zhang M T, Shang L, Sheng G Y, Zhang X P, Wen X D, Wu L Z, Tung C H, Zhang T R. Adv. Mater., 2018, 30(3): 1704663.
[23]
Guo X L, Zheng X Q, Hu X L, Zhao Q N, Li L, Yu P, Jing C, Zhang Y X, Huang G S, Jiang B, Xu C H, Pan F S. Nano Energy, 2021, 84: 105932.
[24]
Saber O, Hatano B, Tagaya H. Mater. Sci. Eng. C, 2005, 25(4): 462.
[25]
Nie L F, Fan G J, Wang A Q, Zhang L, Guan J, Han N, Chen Y F. Sens. Actuat. B Chem., 2021, 345: 130412.
[26]
Yang H, Xiong C S, Liu X Y, Liu A, Li T Y, Ding R, Shah S P, Li W H. Constr. Build. Mater., 2021, 307: 124991.
[27]
Kooli F, Rives V, Ulibarri M A. Inorg. Chem., 1995, 34(21): 5114.
[28]
Zhang S T, Dou Y B, Zhou J Y, Pu M, Yan H, Wei M, Evans D G, Duan X. ChemPhysChem, 2016, 17(17): 2754.
[29]
Markov L. Solid State Ion., 1990, 39(3/4): 187.
[30]
Chivu V, Gilea D, Cioatera N, Carja G, Mureseanu M. Appl. Surf. Sci., 2020, 513: 145853.
[31]
Liu Q, Wang J M, An K, Zhang S R, Liu G L, Liu Y. Energy Technol., 2020, 8(9): 2000205.
[32]
Han J B, Dou Y B, Wei M, Evans D, Duan X. Angew. Chem. Int. Ed., 2010, 49(12): 2171.
[33]
Kowalik P, Konkol M, Kondracka M, PrÓchniak W, Bicki R, Wiercioch P. Appl. Catal. A Gen., 2013, 464/465: 339.
[34]
Gavinehroudi R G, Mahjoub A, Karimi M, Sadeghi S, Heydari A, Mohebali H, Ghamami S. Green Chem., 2022, 24(18): 6965.
[35]
Zhao Y X, Zheng L R, Shi R, Zhang S, Bian X A, Wu F, Cao X Z, Waterhouse G I N, Zhang T R. Adv. Energy Mater., 2020, 10(34): 2002199.
[36]
Zhang S, Zhao Y X, Shi R, Zhou C, Waterhouse G I N, Wu L Z, Tung C H, Zhang T R. Adv. Energy Mater., 2020, 10(8): 1901973.
[37]
Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T. Angew. Chem. Int. Ed., 2012, 51(32): 8008.
[38]
Iguchi S, Hasegawa Y, Teramura K, Hosokawa S, Tanaka T. J. CO2 Util., 2016, 15: 6.
[39]
Jo W K, Kumar S, Tonda S. Compos. B Eng., 2019, 176: 107212.
[40]
Bi Z X, Guo R T, Hu X, Wang J, Chen X, Pan W G. Nanoscale, 2022, 14(9): 3367.
[41]
Li X, Yu J G, Jaroniec M, Chen X B. Chem. Rev., 2019, 119(6): 3962.
[42]
Wu H L, Li X B, Tung C H, Wu L Z. Adv. Mater., 2019, 31(36): 1900709.
[43]
Xiong X Y, Zhao Y F, Shi R, Yin W J, Zhao Y X, Waterhouse G I N, Zhang T R. Sci. Bull., 2020, 65(12): 987.
[44]
Wang R N, Wang X Y, Xiong Y H, Hou Y Y, Wang Y X, Ding J, Zhong Q. ACS Appl. Mater. Interfaces, 2022, 14(31): 35654.
[45]
Xiao Q L, Xu J Y, Zhang J, Sun Y H, Zhu Y. J. Energy Chem., 2017, 26(3): 325.
[46]
Wan J, Lin J S, Guo X L, Wang T, Zhou R X. Chem. Eng. J., 2019, 368: 719.
[47]
Yang F F, Liu D, Zhao Y T, Wang H, Han J Y, Ge Q F, Zhu X L. ACS Catal., 2018, 8(3): 1672.
[48]
Li W, Zhang S L, Fan Q N, Zhang F Z, Xu S L. Nanoscale, 2017, 9(17): 5677.
[49]
Wu W, Song L, Li Y C, Zhang F, Zeng R C, Li S Q, Zou Y H. J. Disper. Sci. Technol., 2021, 42(14): 2154.
[50]
Alibakhshi E, Ghasemi E, Mahdavian M, Ramezanzadeh B, Yasaei M. J. Clean. Prod., 2020, 251: 119676.
[51]
Wang H, Yang F, He S A, Li Y, Wu Y. J. Mol. Struct., 2022, 1249: 131529.
[52]
Wang Y Y, Xie C, Zhang Z Y, Liu D D, Chen R, Wang S Y. Adv. Funct. Mater., 2018, 28(4): 1703363.
[53]
Wang Y Y, Zhang Y Q, Liu Z J, Xie C, Feng S, Liu D D, Shao M F, Wang S Y. Angew. Chem. Int. Ed., 2017, 56(21): 5867.
[54]
Zhao Y F, Chen G B, Bian T, Zhou C, Waterhouse G I N, Wu L Z, Tung C H, Smith L J, O’Hare D, Zhang T R. Adv. Mater., 2015, 27(47): 7823.
[55]
Tan L, Xu S M, Wang Z L, Xu Y Q, Wang X, Hao X J, Bai S, Ning C J, Wang Y, Zhang W K, Jo Y K, Hwang S J, Cao X Z, Zheng X S, Yan H, Zhao Y F, Duan H H, Song Y F. Angew. Chem., 2019, 131(34): 11986.
[56]
Bai S, Li T, Wang H J, Tan L, Zhao Y F, Song Y F. Chem. Eng. J., 2021, 419: 129390.
[57]
Tokudome Y, Fukui M G, Iguchi S, Hasegawa Y, Teramura K, Tanaka T, Takemoto M, Katsura R, Takahashi M. J. Mater. Chem. A, 2018, 6(20): 9684.
[58]
Zhu L, Qiao Z P. RSC Adv., 2022, 12(17): 10592.
[59]
Sun D Z, Li J, Shen T Y, An S, Qi B, Song Y F. ACS Appl. Mater. Interfaces, 2022, 14(14): 16369.
[60]
Ali Khan A, Tahir M. ACS Appl. Energy Mater., 2022, 5(1): 784.
[61]
Li P S, Xie Q X, Zheng L R, Feng G, Li Y J, Cai Z, Bi Y M, Li Y P, Kuang Y, Sun X M, Duan X. Nano Res., 2017, 10(9): 2988.
[62]
de Smit E, Weckhuysen B M. Chem. Soc. Rev., 2008, 37(12): 2758.
[63]
Yang C, Zhao H B, Hou Y L, Ma D. J. Am. Chem. Soc., 2012, 134(38): 15814.
[64]
Zhang H, Chu W. Prog. Chem., 2009, 21(4): 622
( 张辉, 储伟. 化学进展, 2009, 21(4): 622).
[65]
Gao W, Gao R, Zhao Y F, Peng M, Song C Q, Li M Z, Li S W, Liu J J, Li W Z, Deng Y C, Zhang M T, Xie J L, Hu G, Zhang Z S, Long R, Wen X D, Ma D. Chem, 2018, 4(12): 2917.
[66]
Bao X H. Chin. Sci. Bull., 2018, 63(14): 1266.
( 包信和. 科学通报, 2018, 63(14): 1266. ).
[67]
Jia J, Wang H, Lu Z L, O’Brien P G, Ghoussoub M, Duchesne P, Zheng Z Q, Li P C, Qiao Q, Wang L, Gu A L, Jelle A A, Dong Y C, Wang Q, Ghuman K K, Wood T, Qian C X, Shao Y, Qiu C Y, Ye M M, Zhu Y M, Lu Z H, Zhang P, Helmy A S, Singh C V, Kherani N P, Perovic D D, Ozin G A. Adv. Sci., 2017, 4(10): 1700252.
[68]
Hoch L B, O’Brien P G, Ali F M, Sandhel A, Perovic D D, Mims C A, Ozin G A. ACS Nano, 2016, 10(9): 9017.
[69]
Qi Y H, Song L Z, Ouyang S X, Liang X C, Ning S B, Zhang Q Q, Ye J H. Adv. Mater., 2020, 32(6): 1903915.
[70]
Chen Y, Zhang Y M, Fan G Z, Song L Z, Jia G, Huang H T, Ouyang S X, Ye J H, Li Z S, Zou Z G. Joule, 2021, 5(12): 3235.
[71]
Zhao Y F, Zhao B, Liu J J, Chen G B, Gao R, Yao S Y, Li M Z, Zhang Q H, Gu L, Xie J L, Wen X D, Wu L Z, Tung C H, Ma D, Zhang T R. Angew. Chem. Int. Ed., 2016, 55(13): 4215.
[72]
Li Z H, Liu J J, Zhao Y F, Shi R, Waterhouse G I N, Wang Y S, Wu L Z, Tung C H, Zhang T R. Nano Energy, 2019, 60: 467.
[73]
Li Z H, Liu J J, Zhao Y F, Waterhouse G I N, Chen G B, Shi R, Zhang X, Liu X W, Wei Y M, Wen X D, Wu L Z, Tung C H, Zhang T R. Adv. Mater., 2018, 30(31): 1800527.
[74]
Zhao Y F, Li Z H, Li M Z, Liu J J, Liu X W, Waterhouse G I N, Wang Y S, Zhao J Q, Gao W, Zhang Z S, Long R, Zhang Q H, Gu L, Liu X, Wen X D, Ma D, Wu L Z, Tung C H, Zhang T R. Adv. Mater., 2018, 30(36): 1803127.
[75]
Wang W, Wang S P, Ma X B, Gong J L. Chem. Soc. Rev., 2011, 40(7): 3703.
[76]
Ma Z Q, Porosoff M D. ACS Catal., 2019, 9(3): 2639.
[77]
Tan T H, Xie B Q, Ng Y H, Abdullah S F B, Tang H Y M, Bedford N, Taylor R A, Aguey-Zinsou K F, Amal R, Scott J. Nat. Catal., 2020, 3(12): 1034.
[78]
Liu L C, Puga A V, Cored J, ConcepciÓn P, PÉrez-Dieste V, García H, Corma A. Appl. Catal. B Environ., 2018, 235: 186.
[79]
Wang L X, Wang L, Zhang J, Liu X L, Wang H, Zhang W, Yang Q, Ma J Y, Dong X, Yoo S J, Kim J G, Meng X J, Xiao F S. Angew. Chem. Int. Ed., 2018, 57(21): 6104.
[80]
Li Z L, Wang J J, Qu Y Z, Liu H L, Tang C Z, Miao S, Feng Z C, An H Y, Li C. ACS Catal., 2017, 7(12): 8544.
[81]
Gao P, Li S G, Bu X N, Dang S S, Liu Z Y, Wang H, Zhong L S, Qiu M H, Yang C G, Cai J, Wei W, Sun Y H. Nat. Chem., 2017, 9(10): 1019.
[82]
Wang L, Ghoussoub M, Wang H, Shao Y, Sun W, Tountas A A, Wood T E, Li H, Loh J Y Y, Dong Y C, Xia M K, Li Y, Wang S H, Jia J, Qiu C Y, Qian C X, Kherani N P, He L, Zhang X H, Ozin G A. Joule, 2018, 2(7): 1369.
[83]
Shao T Y, Wang X N, Dong H X, Liu S K, Duan D L, Li Y P, Song P, Jiang H J, Hou Z H, Gao C, Xiong Y J. Adv. Mater., 2022, 34(28): 2202367.
[84]
Deng B W, Song H, Peng K, Li Q, Ye J H. Appl. Catal. B: Environ., 2021, 298: 120519.
[85]
Zhang Z S, Mao C L, Meira D M, Duchesne P N, Tountas A A, Li Z, Qiu C Y, Tang S L, Song R, Ding X, Sun J C, Yu J F, Howe J Y, Tu W G, Wang L, Ozin G A. Nat. Commun., 2022, 13(1): 1.
[86]
Song L Z, Yi X L, Ouyang S X, Ye J H. Nanoscale Adv., 2022, 4(16): 3391.
[87]
Li Z H, Shi R, Zhao J Q, Zhang T R. Nano Res., 2021, 14(12): 4828.
[88]
He Z H, Qian Q L, Ma J, Meng Q L, Zhou H C, Song J L, Liu Z M, Han B X. Angew. Chem. Int. Ed., 2016, 55(2): 737.
[89]
Wang H, Zhou W, Liu J X, Si R, Sun G, Zhong M Q, Su H Y, Zhao H B, Rodriguez J A, Pennycook S J, Idrobo J, Li W X, Kou Y, Ma D. J. Am. Chem. Soc., 2013, 135(10): 4149.
[90]
Gao W, Zhao Y F, Chen H R, Chen H, Li Y W, He S, Zhang Y K, Wei M, Evans D G, Duan X. Green Chem., 2015, 17(3): 1525.
[91]
Bai S X, Shao Q, Wang P T, Dai Q G, Wang X Y, Huang X Q. J. Am. Chem. Soc., 2017, 139(20): 6827.
[92]
Zhao J Q, Shi R, Waterhouse G I N, Zhang T R. Nano Energy, 2022, 102: 107650.
[93]
Li Z H, Liu J J, Shi R, Waterhouse G I N, Wen X D, Zhang T R. Adv. Energy Mater., 2021, 11(12): 2002783.
[94]
Xu S, Wang X L, Zhao R. Prog. Chem, 2003, 15(2): 141
( 许珊, 王晓来, 赵睿. 化学进展, 2003, 15(2): 141).
[95]
Taifan W, Baltrusaitis J. Appl. Catal. B Environ., 2016, 198: 525.
[96]
Usman M, Wan Daud W M A, Abbas H F. Renew. Sustain. Energy Rev., 2015, 45: 710.
[97]
Qin Z Z, Chen J, Xie X L, Luo X, Su T M, Ji H B. Environ. Chem. Lett., 2020, 18(4): 997.
[98]
Zhang G J, Liu J W, Xu Y, Sun Y H. Int. J. Hydrog. Energy, 2018, 43(32): 15030.
[99]
Tang Y, Wei Y C, Wang Z Y, Zhang S R, Li Y T, Nguyen L, Li Y X, Zhou Y, Shen W J, Tao F F, Hu P J. J. Am. Chem. Soc., 2019, 141(18): 7283.
[100]
Mao X Y, Foucher A C, Stach E A, Gorte R J. J. Catal., 2020, 381: 561.
[101]
Santos Carvalho L, Martins A R, Reyes P, Oportus M, Albonoz A, Vicentini V, do Carmo Rangel M. Catal. Today, 2009, 142(1-2): 52.
[102]
Djinović P, Osojnik Črnivec I G, Erjavec B, Pintar A. Appl. Catal. B Environ., 2012, 125: 259.
[103]
Lin J M, Cen J, Li Z J, Yang L Y, Yao N. Chem. Ind. Eng. Prog., 2022, 41(1): 201.
( 林俊明, 岑洁, 李正甲, 杨林颜, 姚楠. 化工进展, 2022, 41(1): 201. ).
[104]
Rostrupnielsen J R, Hansen J H B. J. Catal., 1993, 144(1): 38.
[105]
Jiang W B, Liu J X, Qiu C, Long R, Xiong Y J. J. Univ. Sci. Tech. China, 2020, 50(11): 1361.
( 江文斌, 刘敬祥, 邱畅, 龙冉, 熊宇杰. 中国科学技术大学学报, 2020, 50(11): 1361.).
[106]
Li X Y, Wang C, Tang J W. Nat. Rev. Mater., 2022, 7(8): 617.
[107]
Zhao J Q, Guo X D, Shi R, Waterhouse G I N, Zhang X R, Dai Q, Zhang T R. Adv. Funct. Mater., 2022, 32(31): 2204056.
[108]
Xing F L, Nakaya Y, Yasumura S, Shimizu K I, Furukawa S. Nat. Catal., 2022, 5(1): 55.
[109]
Nakaya Y, Xing F L, Ham H, Shimizu K I, Furukawa S. Angewandte Chemie, 2021, 133(36): 19867.
[110]
Jiang W B, Low J, Mao K K, Duan D L, Chen S M, Liu W, Pao C W, Ma J, Sang S K, Shu C, Zhan X Y, Qi Z M, Zhang H, Liu Z, Wu X J, Long R, Song L, Xiong Y J. J. Am. Chem. Soc., 2021, 143(1): 269.
[111]
Hou Z Y, Chen P, Fang H L, Zheng X M, Yashima T. Int. J. Hydrog. Energy, 2006, 31(5): 555.
[112]
Ocsachoque M, Pompeo F, Gonzalez G. Catal. Today, 2011, 172(1): 226.
[113]
Wang P, Zhang X Y, Shi R, Zhao J Q, Yuan Z Y, Zhang T R. Energy Fuels, 2022, 36(19): 11627.
[114]
Xu Z M, Bian Z F. Acta Phys. Chim. Sin., 2020, 36(3): 1907013.
( 许振民, 卞振锋. 物理化学学报, 2020, 36(3): 1907013.).
[115]
Zhao J Q, Shi R, Zhang X R, Wang Z P, Zhang T R. Nanotechnology, 2022, 33(18): 185401.
[116]
Song S, Song H, Li L M, Wang S Y, Chu W, Peng K, Meng X G, Wang Q, Deng B W, Liu Q X, Wang Z, Weng Y X, Hu H L, Lin H W, Kako T, Ye J H. Nat. Catal., 2021, 4(12): 1032.
[117]
Dai L, Zhang H. Sci. Bull., 2018, 63(11): 669.
[118]
Zhou L, He S R, Xu X H, Li G W, Jia C C. Adv. Sci., 2023, 10(2): 2204674.
[119]
Liu J C, Luo L L, Xiao H, Zhu J F, He Y, Li J. J. Am. Chem. Soc., 2022, 144(45): 20601.
[120]
Gan T, Chu X F, Qi H, Zhang W X, Zou Y C, Yan W F, Liu G. Appl. Catal. B Environ., 2019, 257: 117943.
[121]
Zhao Y F, Jia X D, Chen G B, Shang L, Waterhouse G I N, Wu L Z, Tung C H, O’Hare D, Zhang T R. J. Am. Chem. Soc., 2016, 138(20): 6517.
[122]
Zhang G Q, Li Y L, He C X, Ren X Z, Zhang P X, Mi H W. Adv. Energy Mater., 2021, 11(11): 2003294.
[123]
Niu W J, He J Z, Gu B N, Liu M C, Chueh Y L. Adv. Funct. Mater., 2021, 31(35): 2103558.
[124]
Ng S F, Lau M Y L, Ong W J. Sol. RRL, 2021, 5(6): 2000535.
[125]
Jiang H Y, Katsumata K I, Hong J, Yamaguchi A, Nakata K, Terashima C, Matsushita N, Miyauchi M, Fujishima A. Appl. Catal. B Environ., 2018, 224: 783.
[126]
Gao G, Zhu Z, Zheng J, Liu Z, Wang Q, Yan Y S. J. Colloid Interface Sci., 2019, 555: 1.
[127]
Wang X, Wang Z L, Bai Y, Tan L, Xu Y Q, Hao X J, Wang J K, Mahadi A H, Zhao Y F, Zheng L R, Song Y F. J. Energy Chem., 2020, 46: 1.
[128]
Fan J X, Zhao Y, Du H X, Zheng L R, Gao M Y, Li D Q, Feng J T. ACS Appl. Mater. Interfaces, 2022, 14(23): 26752.
[129]
Ren J, Ouyang S X, Xu H, Meng X G, Wang T, Wang D F, Ye J H. Adv. Energy Mater., 2017, 7(5): 1601657.
[130]
Li Z H, Liu J J, Zhao J Q, Shi R, Waterhouse G I N, Wen X D, Zhang T R. Adv. Funct. Mater., 2023, 33(11): 2213672.

Funding

The National Natural Science Foundation of China(51825205)
The National Natural Science Foundation of China(52120105002)
The National Natural Science Foundation of China(22088102)
The National Natural Science Foundation of China(22209190)
The Postdoctoral Science Foundation of China(2021M703288)
The Postdoctoral Science Foundation of China(2022T150665)
PDF(20263 KB)

Accesses

Citation

Detail

Sections
Recommended

/