All Solid-State Sodium Batteries and Its Interface Modification

Dongrong Yang, Da Zhang, Kun Ren, Fupeng Li, Peng Dong, Jiaqing Zhang, Bin Yang, Feng Liang

Prog Chem ›› 2023, Vol. 35 ›› Issue (8) : 1177-1190.

PDF(22847 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(22847 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (8) : 1177-1190. DOI: 10.7536/PC221220
Review

All Solid-State Sodium Batteries and Its Interface Modification

Author information +
History +

Abstract

All solid-state sodium batteries have great potential for portable electronics, electric vehicles, and large-scale energy storage applications due to the low cost of sodium, high security, and high energy density. However, the development and large-scale application of all-solid-state sodium ion batteries urgently need to solve the problems such as low ion conductivity of solid electrolyte, high charge-transfer impedance on interface, insufficient interfacial contact, and compatibility issues between electrodes and electrolytes solid electrolyte. Herein, combining the latest reports with our research findings, the research progress and development trend of β-Al2O3 electrolytes, NASICON electrolytes, sulfide electrolytes, polymer electrolytes, and composite electrolytes were summarized. The latest achievements in interface characteristics, the modification strategies of the interface between the electrodes and solid electrolytes and modification methods for surfaces of solid electrolytes were reviewed. Finally, the development direction of interface modification strategy for solid-state sodium ion batteries was prospected. This review have contributed to understand the interface science issues of all solid-state sodium ion batteries and provides a theoretical guidance for the development and application of solid-state sodium ion batteries.

Contents

1 Introduction

2 Solid-state electrolytes

3 Challenges for all solid-state sodium batteries

4 Interfaces engineering

4.1 Cathode/electrolyte interfaces

4.2 Anode/electrolytes interfaces

4.3 Structure design for interfaces engineering

5 Conclusion and future perspectives

Key words

all solid-state sodium batteries / solid-state electrolytes / interface / modification

Cite this article

Download Citations
Dongrong Yang , Da Zhang , Kun Ren , et al . All Solid-State Sodium Batteries and Its Interface Modification[J]. Progress in Chemistry. 2023, 35(8): 1177-1190 https://doi.org/10.7536/PC221220

References

[1]
Jiang Y P, Wang B, Liu A M, Song R S, Bao C Y, Ning Y, Wang F, Ruan T T, Wang D L, Zhou Y. Electrochimica Acta, 2020, 339: 135941.
[2]
Wang F, Wang B, Ruan T T, Gao T T, Song R S, Jin F, Zhou Y, Wang D L, Liu H K, Dou S X. ACS Nano, 2019, 13(10): 12219.
[3]
Yadegari H, Sun X L. Trends Chem., 2020, 2(3): 241.
[4]
Sun Q, Liu J, Xiao B W, Wang B Q, Banis M, Yadegari H, Adair K R, Li R Y, Sun X L. Adv. Funct. Mater., 2019, 29(13): 1808332.
[5]
Senthilkumar S T, Go W, Han J, Pham Thi Thuy L, Kishor K, Kim Y, Kim Y. J. Mater. Chem. A, 2019, 7(40): 22803.
[6]
Lee B, Paek E, Mitlin D, Lee S W. Chem. Rev., 2019, 119(8): 5416.
[7]
Tang B, Jaschin P W, Li X, Bo S H, Zhou Z. Mater. Today, 2020, 41: 200.
[8]
Bucci G, Brandon T, Ananya R B, Yet-Ming C, Craig C W. Physical Review Materials, 2018, 2(10): 105407.
[9]
Xu C, Ahmad Z, Aryanfar A, Viswanathan V, Greer J R. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(1): 57.
[10]
Wang Y M, Song S F, Xu C H, Hu N, Molenda J, Lu L. Nano Mater. Sci., 2019, 1(2): 91.
[11]
Liu Q, Zhao X H, Yang Q, Hou L J, Mu D B, Tan G Q, Li L, Chen R J, Wu F. Adv. Mater. Technol., 2023, 8(7): 2200822.
[12]
Lu Y, Li L, Zhang Q, Niu Z Q, Chen J. Joule, 2018, 2(9): 1747.
[13]
Che H Y, Chen S L, Xie Y Y, Wang H, Amine K, Liao X Z, Ma Z F. Energy Environ. Sci., 2017, 10(5): 1075.
[14]
Yao Y, Wei Z Y, Wang H Y, Huang H J, Jiang Y, Wu X J, Yao X Y, Wu Z S, Yu Y. Adv. Energy Mater., 2020, 10(12): 2070055.
[15]
Fan L, Wei S Y, Li S Y, Li Q, Lu Y Y. Adv. Energy Mater., 2018, 8(11): 1702657.
[16]
Zhang W, Zhao C D, Wu X L. Adv. Mater. Interfaces, 2020, 7(23): 2001444.
[17]
Sheng O W, Jin C B, Ding X F, Liu T F, Wan Y H, Liu Y J, Nai J W, Wang Y, Liu C T, Tao X Y. Adv. Funct. Mater., 2021, 31(27): 2100891.
[18]
Tang S, Guo W, Fu Y Z. Adv. Energy Mater., 2021, 11(2): 2000802.
[19]
Zuo T T, Rueß R, Pan R J, Walther F, Rohnke M, Hori S, Kanno R, Schröder D, Janek J. Nat. Commun., 2021, 12: 6669.
[20]
Haruyama J, Sodeyama K, Han L Y, Takada K, Tateyama Y. Chem. Mater., 2014, 26(14): 4248.
[21]
Koerver R, Aygün I, Leichtweiß T, Dietrich C, Zhang W B, Binder J O, Hartmann P, Zeier W G, Janek J. Chem. Mater., 2017, 29(13): 5574.
[22]
Banerjee A, Wang X F, Fang C C, Wu E A, Meng Y S. Chem. Rev., 2020, 120(14): 6878.
[23]
Bao C Y, Wang B, Liu P, Wu H, Zhou Y, Wang D L, Liu H K, Dou S X. Adv. Funct. Mater., 2020, 30(52): 2004891.
[24]
Jin X, Zhao Y, Shen Z H, Pu J, Xu X X, Zhong C L, Zhang S, Li J C, Zhang H G. Energy Storage Mater., 2020, 31: 221.
[25]
Wu, F.B, YangB, YeJ L. Eds. Chapter 2-Technologies of energy storage systems. In Grid-Scale Energy Storage Systems and Applications; Academic Press: Cambridge, MA, USA, 2019.17.
[26]
Zhao C L, Liu L L, Qi X G, Lu Y X, Wu F X, Zhao J M, Yu Y, Hu Y S, Chen L Q. Adv. Energy Mater., 2018, 8(17): 1703012.
[27]
Wu J F, Zhang R, Fu Q F, Zhang J S, Zhou X Y, Gao P, Xu C H, Liu J L, Guo X. Adv. Funct. Mater., 2021, 31(13): 2008165.
[28]
Zhao Y J, Wang C Z, Dai Y J, Jin H B. Nano Energy, 2021, 88: 106293.
[29]
Wang C Z, Sun Z, Zhao Y J, Wang B Y, Shao C X, Sun C, Zhao Y, Li J B, Jin H B, Qu L T. Small, 2021, 17(40): 2103819.
[30]
Shen L, Deng S G, Jiang R R, Liu G Z, Yang J, Yao X Y. Energy Storage Mater., 2022, 46: 175.
[31]
Shen L, Yang J, Liu G, Avdeev M, Yao X. Mater. Today Energy, 2021, 20: 100691.
[32]
Liu L L, Qi X G, Yin S J, Zhang Q Q, Liu X Z, Suo L M, Li H, Chen L Q, Hu Y S. ACS Energy Lett., 2019, 4(7): 1650.
[33]
Zhang Q Q, Lu Y X, Yu H, Yang G J, Liu Q Y, Wang Z X, Chen L Q, Hu Y S. J. Electrochem. Soc., 2020, 167(7): 070523.
[34]
Qiao L X, Judez X, Rojo T, Armand M, Zhang H. J. Electrochem. Soc., 2020, 167(7): 070534.
[35]
Kang S, Yang C, Jeon B, Jeon B, Koo B, Hong S T, Lee H. Chemical Engineering Journal, 2021, 426: 131901.
[36]
Zheng S H, Huang H J, Dong Y F, Wang S, Zhou F, Qin J Q, Sun C L, Yu Y, Wu Z S, Bao X H. Energy Environ. Sci., 2020, 13(3): 821.
[37]
Lonchakova O V, Semenikhin O A, Zakharkin M V, Karpushkin E A, Sergeyev V G, Antipov E V. Electrochimica Acta, 2020, 334: 135512.
[38]
Zhang Z, Huang Y, Li C, Li X. ACS Appl. Mater. Interfaces, 2021, 13(31): 37262.
[39]
Wen P C, Lu P F, Shi X Y, Yao Y, Shi H D, Liu H Q, Yu Y, Wu Z S. Adv. Energy Mater., 2021, 11(6): 2002930.
[40]
Yang H L, Zhang B W, Konstantinov K, Wang Y X, Liu H K, Dou S X. Adv. Energy Sustain. Res., 2021, 2(2): 2000057.
[41]
Hou M J, Liang F, Chen K F, Dai Y N, Xue D F. Nanotechnology, 2020, 31(13): 132003.
[42]
Hueso K B, Palomares V, Armand M, Rojo T. Nano Res., 2017, 10(12): 4082.
[43]
Lee S T, Lee D H, Lee S M, Han S S, Lee S H, Lim S K. Bull. Mater. Sci., 2016, 39(3): 729.
[44]
Bates J B, Engstrom H, Wang J C, Larson B C, Dudney N J, Brundage W E. Solid State Ion., 1981, 5: 159.
[45]
Lu X C, Xia G G, Lemmon J P, Yang Z G. J. Power Sources, 2010, 195(9): 2431.
[46]
Zhang S P, Yao Y, Yu Y. ACS Energy Lett., 2021, 6(2): 529.
[47]
Yang K S, Liu D Y, Qian Z F, Jiang D T, Wang R H. ACS Nano, 2021, 15(11): 17232.
[48]
Hou M J, Yang X C, Liang F, Dong P, Chen Y N, Li J R, Chen K F, Dai Y N, Xue D F. ACS Appl. Mater. Interfaces, 2021, 13(28): 33262.
[49]
Hou M J, Qu T, Zhang Q K, Yao Y C, Dai Y N, Liang F, Okuma G, Hayashi K. Corros. Sci., 2020, 177: 109012.
[50]
Schuett J, Pescher F, Neitzel-Grieshammer S. Phys. Chem. Chem. Phys., 2022, 24(36): 22154.
[51]
Deng Z, Gautam G S, Chotard J N, Kolli S K, Canepa P. ECS Meeting Abstracts. IOP Publishing, 2020, 5: 1002.
[52]
Zhang Q K, Liang F, Yao Y C, Ma W H, Yang B, Dai Y N. Progress in Chemistry, 2019, 31(1): 210.
(张庆凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 化学进展, 2019, 31(1): 210.).
[53]
Park H, Jung K, Nezafati M, Kim C S, Kang B. ACS Appl. Mater. Interfaces, 2016, 8(41): 27814.
[54]
Zhao Y, Wang L, Zhou Y N, Liang Z, Tavajohi N, Li B H, Li T. Adv. Sci., 2021, 8(7): 2003675.
[55]
Song S F, Duong H M, Korsunsky A M, Hu N, Lu L. Sci. Rep., 2016, 6: 32330.
[56]
Ma Q L, Guin M, Naqash S, Tsai C L, Tietz F, Guillon O. Chem. Mater., 2016, 28(13): 4821.
[57]
Ruan Y L, Song S D, Liu J J, Liu P, Cheng B W, Song X Y, Battaglia V. Ceram. Int., 2017, 43(10): 7810.
[58]
Zhang Z Z, Zhang Q H, Shi J N, Chu Y S, Yu X Q, Xu K Q, Ge M Y, Yan H F, Li W J, Gu L, Hu Y S, Li H, Yang X Q, Chen L Q, Huang X J. Adv. Energy Mater., 2017, 7(4): 1601196.
[59]
Oh J A S, He L C, Plewa A, Morita M, Zhao Y, Sakamoto T, Song X, Zhai W, Zeng K Y, Lu L. ACS Appl. Mater. Interfaces, 2019, 11(43): 40125.
[60]
Zhu Z Y, Chu I H, Deng Z, Ong S P. Chem. Mater., 2015, 27(24): 8318.
[61]
Cao C, Li Z B, Wang X L, Zhao X B, Han W Q. Front. Energy Res., 2014, 2: 25.
[62]
Kim J J, Yoon K, Park I, Kang K. Small Methods, 2017, 1(10): 1700219.
[63]
Zhang L, Yang K, Mi J L, Lu L, Zhao L R, Wang L M, Li Y M, Zeng H. Adv. Energy Mater., 2015, 5(24): 1501294.
[64]
Takeuchi S, Suzuki K, Hirayama M, Kanno R. J. Solid State Chem., 2018, 265: 353.
[65]
Famprikis T, Dawson J A, Fauth F, Clemens O, Suard E, Fleutot B, Courty M, Chotard J N, Islam M S, Masquelier C. ACS Mater. Lett., 2019, 1(6): 641.
[66]
Banerjee A, Park K H, Heo J W, Nam Y J, Moon C K, Oh S M, Hong S T, Jung Y S. Angewandte Chemie, 2016, 128(33): 9786.
[67]
Yu Z X, Shang S L, Seo J H, Wang D W, Luo X Y, Huang Q Q, Chen S R, Lu J, Li X L, Liu Z K, Wang D H. Adv. Mater., 2017, 29(16): 1605561.
[68]
Chu I H, Kompella C S, Nguyen H, Zhu Z Y, Hy S, Deng Z, Meng Y S, Ong S P. Sci. Rep., 2016, 6: 33733.
[69]
Wan H L, Mwizerwa J P, Qi X G, Liu X, Xu X X, Li H, Hu Y S, Yao X Y. ACS Nano, 2018, 12(3): 2809.
[70]
Heo J W, Banerjee A, Park K H, Jung Y S, Hong S T. Adv. Energy Mater., 2018, 8(11): 1702716.
[71]
Scrosati B. Chem. Record, 2001, 1(2): 173.
[72]
Young W S, Kuan W F, Epps T H III. J. Polym. Sci. B Polym. Phys., 2014, 52(1): 1.
[73]
Chen R J, Qu W J, Guo X, Li L, Wu F. Mater. Horiz., 2016, 3(6): 487.
[74]
Ramaswamy M, Malayandi T, Subramanian S, Srinivasalu J, Rangaswamy M, Soundararajan V. Polym. Plast. Technol. Eng., 2017, 56(9): 992.
[75]
Zhang J J, Zhao J H, Yue L P, Wang Q F, Chai J C, Liu Z H, Zhou X H, Li H, Guo Y G, Cui G L, Chen L Q. Adv. Energy Mater., 2015, 5(24): 1501082.
[76]
Li X R, Meng L Y, Zhang Y L, Qin Z X, Meng L P, Li C F, Liu M L. Polymers, 2022, 14(11): 2159.
[77]
Chen S L, Che H Y, Feng F, Liao J P, Wang H, Yin Y M, Ma Z F. ACS Appl. Mater. Interfaces, 2019, 11(46): 43056.
[78]
Patel M, Chandrappa K G, Bhattacharyya A J. Solid State Ion., 2010, 181(17/18): 844.
[79]
Kiran Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma A K, Narasimha Rao V V R. Phys. B Condens. Matter, 2011, 406(9): 1706.
[80]
Kunteppa H, Roy A S, Koppalkar A R, Ambika Prasad M V N. Phys. B Condens. Matter, 2011, 406(21): 3997.
[81]
Yu W H, Zhai Y F, Yang G M, Yao J Y, Song S F, Li S, Tang W P, Hu N, Lu L. Ceram. Int., 2021, 47(8): 11156.
[82]
Wang Y M, Wang Z T, Sun J G, Zheng F, Kotobuki M, Wu T, Zeng K Y, Lu L. J. Power Sources, 2020, 454: 227949.
[83]
Wu J F, Yu Z Y, Wang Q, Guo X. Energy Storage Mater., 2020, 24: 467.
[84]
Serra Moreno J, Armand M, Berman M B, Greenbaum S G, Scrosati B, Panero S. J. Power Sources, 2014, 248: 695.
[85]
Li Z, Fu J L, Zhou X Y, Gui S W, Wei L, Yang H, Li H, Guo X. Adv. Sci., 2023, 10(10): 2201718.
[86]
Song S F, Kotobuki M, Zheng F, Xu C H, Savilov S V, Hu N, Lu L, Wang Y, Dong Z, Li W. J. Mater. Chem. A, 2017, 5(14): 6424.
[87]
Hou W R, Guo X W, Shen X Y, Amine K, Yu H J, Lu J. Nano Energy, 2018, 52: 279.
[88]
Kim J K, Lim Y J, Kim H, Cho G B, Kim Y. Energy Environ. Sci., 2015, 8(12): 3589.
[89]
Ling W, Fu N, Yue J P, Zeng X X, Ma Q, Deng Q, Xiao Y, Wan L J, Guo Y G, Wu X W. Adv. Energy Mater., 2020, 10(9): 1903966.
[90]
Yoshida K, Sato T, Unemoto A, Matsuo M, Ikeshoji T, Udovic T J, Orimo S I. Appl. Phys. Lett., 2017, 110(10): 103901.
[91]
Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C. Nature Materials, 2019, 18(12): 1278.
[92]
Goodenough J B, Hong H Y P, Kafalas J A. Mater. Res. Bull., 1976, 11(2): 203.
[93]
de Klerk N J J, Wagemaker M. ACS Appl. Energy Mater., 2018, 1(10): 5609.
[94]
Cheng Z, Liu M, Ganapathy S, Li C, Li Z L, Zhang X Y, He P, Zhou H S, Wagemaker M. Joule, 2020, 4(6): 1311.
[95]
Fan X L, Yue J, Han F D, Chen J, Deng T, Zhou X Q, Hou S, Wang C S. ACS Nano, 2018, 12(4): 3360.
[96]
Ando T, Sakuda A, Tatsumisago M, Hayashi A. Electrochem. Commun., 2020, 116: 106741.
[97]
Gao H C, Xue L G, Xin S, Park K, Goodenough J B. Angew. Chem., 2017, 129(20): 5633.
[98]
Yu X W, Xue L G, Goodenough J B, Manthiram A. Adv. Funct. Mater., 2021, 31(2): 2002144.
[99]
Jiang B W, Wei Y, Wu J Y, Cheng H, Yuan L X, Li Z, Xu H H, Huang Y H. EnergyChem, 2021, 3(5): 100058.
[100]
Wan H L, Mwizerwa J P, Qi X G, Xu X X, Li H, Zhang Q, Cai L T, Hu Y S, Yao X Y. ACS Appl. Mater. Interfaces, 2018, 10(15): 12300.
[101]
Cheng M, Qu T, Zi J, Yao Y C, Liang F, Ma W H, Yang B, Dai Y N, Lei Y. Nanotechnology, 2020, 31(42): 425401.
[102]
Chen L, Huang S B, Qiu J Y, Zhang H, Cao G P. Progress in Chemistry, 2021, 33(8): 1378.
(陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 化学进展, 2021, 33(8): 1378.).
[103]
Ma Q, Liu J J, Qi X G, Rong X H, Shao Y J, Feng W F, Nie J, Hu Y S, Li H, Huang X J, Chen L Q, Zhou Z B. J. Mater. Chem. A, 2017, 5(17): 7738.
[104]
Kuai Y X, Wang F F, Yang J, Lu H C, Xu Z X, Xu X C, NuLi Y N, Wang J L. Mater. Chem. Front., 2021, 5(17): 6502.
[105]
Luo W, Lin C F, Zhao O, Noked M, Zhang Y, Rubloff G W, Hu L B. Adv. Energy Mater., 2017, 7(2): 1601526.
[106]
Matios E, Wang H, Wang C L, Hu X F, Lu X, Luo J M, Li W Y. ACS Appl. Mater. Interfaces, 2019, 11(5): 5064.
[107]
Lu Y, Cai Y C, Zhang Q, Liu L J, Niu Z Q, Chen J. Chem. Sci., 2019, 10(15): 4306.
[108]
Wang X X, Chen J J, Mao Z Y, Wang D J. J. Mater. Chem. A, 2021, 9(29): 16039.
[109]
Zhou W D, Li Y T, Xin S, Goodenough J B. ACS Cent. Sci., 2017, 3(1): 52.
[110]
Fu H Y, Yin Q Y, Huang Y, Sun H B, Chen Y W, Zhang R Q, Yu Q, Gu L, Duan J, Luo W. ACS Mater. Lett., 2020, 2(2): 127.
[111]
Lu Y, Alonso J A, Yi Q, Lu L, Wang Z L, Sun C W. Adv. Energy Mater., 2019, 9(28): 1901205.
[112]
Zhao C L, Liu L L, Lu Y X, Wagemaker M, Chen L Q, Hu Y S. Angew. Chem., 2019, 131(47): 17182.
[113]
Chen X Z, He W J, Ding L X, Wang S Q, Wang H H. Energy Environ. Sci., 2019, 12(3): 938.
[114]
Yamauchi H, Ikejiri J, Sato F, Oshita H, Honma T, Komatsu T. J. Am. Ceram. Soc., 2019, 102(11): 6658.
[115]
Inoishi A, Omuta T, Kobayashi E, Kitajou A, Okada S. Adv. Mater. Interfaces, 2017, 4(5): 1600942.

Funding

National Natural Science Foundation of China(12175089)
National Natural Science Foundation of China(12205127)
Key Research and Development Program of Yunnan Province(202103AF140006)
Applied Basic Research Programs of Yunnan Provincial Science and Technology Department(202001AW070004)
PDF(22847 KB)

Accesses

Citation

Detail

Sections
Recommended

/