Micro-/Nanorobots for Enhanced Antibacterial Treatment

Ting Liu, Shiyao Pang, Xiaohui Yan

Prog Chem ›› 2023, Vol. 35 ›› Issue (7) : 997-1004.

PDF(8159 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(8159 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (7) : 997-1004. DOI: 10.7536/PC221231
Review

Micro-/Nanorobots for Enhanced Antibacterial Treatment

Author information +
History +

Abstract

Bacterial infections, becoming the second leading cause of death in the worldwide, pose a serious threat to public health. Plenty of therapeutic strategies, such as antibiotic therapy, photothermal therapy, photodynamic therapy and sonodynamic therapy, etc., have been developed to treat bacterial infections. However, how to improve the efficiency of antibacterial therapy is still a great challenge. Micro-/nanorobots, as miniaturized robots with active motion properties, are promising to provide new therapeutic strategies for effective antibacterial. On the one hand, micro-/nanorobots can accurately deliver antibacterial media to the micro area of the lesion through their controllable directional movement. On the other hand, the motion of swarms of micro-/nanorobots can also cause mechanical effect and fluid stirring effects, which mechanically damage the pathogen and at the same time, promote the full reaction between pathogens and antibacterial media, so as to enhance the antibacterial efficiency synergistically. In this review, we summarize the important research advances of micro-/nanorobots in the field of antibacterial applications, and start from the driving mode of antibacterial micro-/nanorobots, systematically expounding the mechanism of action and application advantages in various antibacterial treatments. Finally, we discuss the potential challenges faced by micro-/nanorobots in antibacterial therapy and prospect the main directions of future research in this field.

Contents

1 Introduction

2 Driving mode of antibacterial micro-/nanorobots

3 Micro-/nanorobots in antibacterial application

3.1 Antibacterial agent delivery

3.2 Enhanced photothermal therapy

3.3 Enhanced photodynamic therapy

3.4 Mechanical disruption

3.5 Synergistic strategies

4 Conclusion and outlook

Key words

micro-/nanorobots / synergy effect / precise control / antibacterial treatment / active delivery

Cite this article

Download Citations
Ting Liu , Shiyao Pang , Xiaohui Yan. Micro-/Nanorobots for Enhanced Antibacterial Treatment[J]. Progress in Chemistry. 2023, 35(7): 997-1004 https://doi.org/10.7536/PC221231

References

[1]
Huang H Y, Ali A, Liu Y, Xie H, Ullah S, Roy S, Song Z Y, Guo B, Xu J. Adv. Drug Deliv. Rev., 2023, 192: 114634.
[2]
Egusquiaguirre S P, Igartua M, Hernández R M, Pedraz J L. Clin. Transl. Oncol., 2012, 14(2): 83.
[3]
Hochvaldova L, Vecerova R, Kolar M, Prucek R, Kvitek L, Lapcik L, Panacek A. Nanotechnol. Rev., 2022, 11: 1115.
[4]
Chang R, Zhao D H, Zhang C, Liu K Y, He Y M, Guan F X, Yao M H. Int. J. Biol. Macromol., 2023, 226: 870.
[5]
He Y M, Liu K Y, Guo S, Chang R, Zhang C, Guan F X, Yao M H. Acta Biomater., 2023, 155: 199.
[6]
Wang B, Xu Y, Shao D H, Li L J, Ma Y Q, Li Y H, Zhu J W, Shi X C, Li W L. Front. Bioeng. Biotechnol., 2022, 10: 1047598.
[7]
Mussini A, Uriati E, Hally C, Nonell S, Bianchini P, Diaspro A, Pongolini S, Delcanale P, Abbruzzetti S, Viappiani C. Bioconjugate Chem., 2022, 33(4): 666.
[8]
Reynoso E, Durantini A M, Solis C A, Macor L P, Otero L A, Gervaldo M A, Durantini E N, Heredia D A. RSC Adv., 2021, 11(38): 23519.
[9]
Wei Z X, Teng S Y, Fu Y, Zhou Q, Yang W S. Prog. Org. Coat., 2022, 164: 106703.
[10]
Wang M Y, Wang X, Liu B, Lang C Y, Wang W, Liu Y, Wang X. J. Pharm. Sci., 2023, 112(1): 336.
[11]
Medina-Sánchez M, Schmidt O G. Nature, 2017, 545(7655): 406.
[12]
Yan M, Liu T Y, Li X F, Zhou S, Zeng H, Liang Q R, Liang K, Wei X B, Wang J Q, Gu Z, Jiang L, Zhao D Y, Kong B. J. Am. Chem. Soc., 2022, 144(17): 7778.
[13]
Li J X, Esteban-Fernández de Ávila B, Gao W, Zhang L F, Wang J. Sci. Robot., 2017, 2(4): eaam6431.
[14]
Xu D D, Zhou C, Zhan C, Wang Y, You Y Q, Pan X, Jiao J P, Zhang R, Dong Z J, Wang W, Ma X. Adv. Funct. Mater., 2019, 29(17): 1807727.
[15]
Chen C Y, Chen L J, Wang P P, Wu L F, Song T. J. Magn. Magn. Mater., 2019, 479: 74.
[16]
Li J H, Shen H, Zhou H J, Shi R, Wu C T, Chu P K. Mater. Sci. Eng. R Rep., 2023, 152: 100712.
[17]
Zhang Z F, Wang L, Chan T K F, Chen Z G, Ip M, Chan P K S, Sung J J Y, Zhang L. Adv. Healthc. Mater., 2022, 11(6): 2101991.
[18]
Liu T Y, Xie L, Price C A H, Liu J, He Q, Kong B. Chem. Soc. Rev., 2022, 51(24): 10083.
[19]
Zhou H J, Dong G Z, Gao G, Du R, Tang X Y, Ma Y N, Li J H. Cyborg Bionic Syst., 2022, 2022: 9852853.
[20]
Gao S, Hou J W, Zeng J, Richardson J J, Gu Z, Gao X, Li D W, Gao M, Wang D W, Chen P, Chen V, Liang K, Zhao D Y, Kong B. Adv. Funct. Mater., 2019, 29(18): 1808900.
[21]
Lin Z H, Gao C Y, Wang D L, He Q. Angew. Chem. Int. Ed., 2021, 60(16): 8750.
[22]
Wavhale R D, Dhobale K D, Rahane C S, Chate G P, Tawade B V, Patil Y N, Gawade S S, Banerjee S S. Commun. Chem., 2021, 4: 159.
[23]
Liu X X, Sun X, Peng Y X, Wang Y, Xu D D, Chen W J, Wang W, Yan X H, Ma X. ACS Nano, 2022, 16(9): 14666.
[24]
Schmidt C K, Medina-Sánchez M, Edmondson R J, Schmidt O G. Nat. Commun., 2020, 11: 5618.
[25]
Tang S S, Zhang F Y, Gong H, Wei F N, Zhuang J, Karshalev E, de Ávila B E F, Huang C Y, Zhou Z D, Li Z X, Yin L, Dong H F, Fang R H, Zhang X J, Zhang L F, Wang J. Sci. Robot., 2020, 5(43): eaba6137.
[26]
Liu W J, Ge H B, Ding X Y, Lu X L, Zhang Y N, Gu Z W. Nanoscale, 2020, 12(38): 19655.
[27]
Stanton M M, Park B W, Vilela D, Bente K, Faivre D, Sitti M, Sánchez S. ACS Nano, 2017, 11(10): 9968.
[28]
Chen C Y, Chen C F, Yi Y, Chen L J, Wu L F, Song T. Biomed. Microdevices, 2014, 16(5): 761.
[29]
Shchelik I S, Molino J V D, Gademann K. Acta Biomater., 2021, 136: 99.
[30]
Shchelik I S, Sieber S, Gademann K. Chem. Eur. J., 2020, 26(70): 16644.
[31]
Zhang F Y, Zhuang J, Li Z X, Gong H, de Ávila B E F, Duan Y O, Zhang Q Z, Zhou J R, Yin L, Karshalev E, Gao W W, Nizet V, Fang R H, Zhang L F, Wang J. Nat. Mater., 2022, 21(11): 1324.
[32]
Soto F, Lopez-Ramirez M A, Jeerapan I, de Avila B E F, Mishra R K, Lu X L, Chai I, Chen C R, Kupor D, Nourhani A, Wang J. Adv. Funct. Mater., 2019, 29(22): 1900658.
[33]
Carlsen R W, Sitti M. Small, 2014, 10(19): 3831.
[34]
Xie H, Sun M M, Fan X J, Lin Z H, Chen W N, Wang L, Dong L X, He Q. Sci. Robot., 2019, 4(28): eaav8006.
[35]
Hong Y Y, Diaz M, CÓrdova-Figueroa U M, Sen A. Adv. Funct. Mater., 2010, 20(10): 1568.
[36]
de Avila B E F, Angell C, Soto F, Lopez-Ramirez M A, Báez D F, Xie S B, Wang J, Chen Y. ACS Nano, 2016, 10(5): 4997.
[37]
Wang L C, Meng Z Y, Chen Y, Zheng Y Y. Adv. Intell. Syst., 2021, 3(7): 2000267.
[38]
Cui T T, Wu S, Sun Y H, Ren J S, Qu X G. Nano Lett., 2020, 20(10): 7350.
[39]
Ussia M, Urso M, Dolezelikova K, Michalkova H, Adam V, Pumera M. Adv. Funct. Mater., 2021, 31(27): 2101178.
[40]
Xie L, Yan M, Liu T Y, Gong K, Luo X, Qiu B L, Zeng J, Liang Q R, Zhou S, He Y J, Zhang W, Jiang Y L, Yu Y, Tang J Y, Liang K, Zhao D Y, Kong B. J. Am. Chem. Soc., 2022, 144(4): 1634.
[41]
Xu T L, Gao W, Xu L P, Zhang X J, Wang S T. Adv. Mater., 2017, 29(9): 1603250.
[42]
Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F, Pourazary A, Katzenberg A, Gao W, Shen Y F, Wang J. ACS Nano, 2013, 7(10): 9232.
[43]
de Avila B E F, Angsantikul P, Ramírez-Herrera D E, Soto F, Teymourian H, Dehaini D, Chen Y J, Zhang L F, Wang J. Sci. Robot., 2018, 3(18): eaat0485.
[44]
Li J X, Angsantikul P, Liu W J, de Avila B E F, Chang X C, Sandraz E, Liang Y Y, Zhu S Y, Zhang Y, Chen C R, Gao W W, Zhang L F, Wang J. Adv. Mater., 2018, 30(2): 1704800.
[45]
Milosavljevic V, Kosaristanova L, Dolezelikova K, Adam V, Pumera M. Adv. Funct. Mater., 2022, 32(43): 2112935.
[46]
Zheng C, Li Z Q, Xu T T, Chen L, Fang F, Wang D, Dai P Q, Wang Q T, Wu X Y, Yan X H. Appl. Mater. Today, 2021, 22: 100962.
[47]
Gong D, Celi N, Xu L, Zhang D, Cai J. Mater. Today Chem., 2022, 23: 100694.
[48]
Villa K, Sopha H, Zelenka J, Motola M, Dekanovsky L, Beketova D C, Macak J M, Ruml T, Pumera M. Small, 2022, 18(36): 2106612.
[49]
Elbourne A, Cheeseman S, Atkin P, Truong N P, Syed N, Zavabeti A, Mohiuddin M, Esrafilzadeh D, Cozzolino D, McConville C F, Dickey M D, Crawford R J, Kalantar-Zadeh K, Chapman J, Daeneke T, Truong V K. ACS Nano, 2020, 14(1): 802.
[50]
Sun M M, Chan K F, Zhang Z F, Wang L, Wang Q L, Yang S H, Chan S M, Chiu P W Y, Sung J J Y, Zhang L. Adv. Mater., 2022, 34(34): 2201888.
[51]
Bhuyan T, Simon A T, Maity S, Singh A K, Ghosh S S, Bandyopadhyay D. ACS Appl. Mater. Interfaces, 2020, 12(39): 43352.
[52]
de Avila B E F, Angsantikul P, Li J X, Angel Lopez-Ramirez M, Ramírez-Herrera D E, Thamphiwatana S, Chen C R, Delezuk J, Samakapiruk R, Ramez V, Obonyo M, Zhang L F, Wang J. Nat. Commun., 2017, 8: 272.
[53]
Yu Q L, Deng T, Lin F C, Zhang B, Zink J I. ACS Nano, 2020, 14(5): 5926.
[54]
Bhuyan T, Singh A K, Ghosh S S, Bandyopadhyay D. Bull. Mater. Sci., 2020, 43(1): 111.
[55]
Qi C Y, Zhang Y P, Tu J. Biochem. Eng. J., 2022, 186: 108569.
[56]
Lin X, Cao Y B, Li J, Zheng D Y, Lan S Y, Xue Y N, Yu F Q, Wu M, Zhu X J. Biomater. Sci., 2019, 7(7): 2996.
[57]
Xie L S, Pang X, Yan X H, Dai Q X, Lin H R, Ye J, Cheng Y, Zhao Q L, Ma X, Zhang X Z, Liu G, Chen X Y. ACS Nano, 2020, 14(3): 2880.
[58]
Yuan H X, Li Z L, Wang X Y, Qi R L. Polymers, 2022, 14(17): 3657.
[59]
Cheeseman S, Elbourne A, Kariuki R, Ramarao A V, Zavabeti A, Syed N, Christofferson A J, Kwon K Y, Jung W, Dickey M D, Kalantar-Zadeh K, McConville C F, Crawford R J, Daeneke T, Chapman J, Truong V K. J. Mater. Chem. B, 2020, 8(47): 10776.
[60]
Gu H, Lee S W, Carnicelli J, Zhang T, Ren D C. Nat. Commun., 2020, 11: 2211.
[61]
Chen C Y, Chen L J, Wang P P, Wu L F, Song T. Nanomed. Nanotechnol. Biol. Med., 2017, 13(2): 363.
[62]
Daima H K, Selvakannan P R, Kandjani A E, Shukla R, Bhargava S K, Bansal V. Nanoscale, 2014, 6(2): 758.
[63]
Liu X, Liu H X, Zhang J Z, Hao Y J, Yang H N, Zhao W B, Mao C. Biomater. Sci., 2022, 10(19): 5608.
[64]
Hwang G, Paula A J, Hunter E E, Liu Y, Babeer A, Karabucak B, Stebe K, Kumar V, Steager E, Koo H. Sci. Robot., 2019, 4(29): eaaw2388.
[65]
Xu D D, Hu J, Pan X, Sánchez S, Yan X H, Ma X. ACS Nano, 2021, 15(7): 11543.
[66]
Lu B T, Hu E L, Xie R Q, Yu K, Lu F, Bao R, Wang C H, Lan G Q, Dai F Y. ACS Appl. Mater. Interfaces, 2021, 13(19): 22225.

Funding

National Natural Science Foundation of China(82001845)
Guangdong Provincial Key Lab of Robotics and Intelligent System(XDHT2019588A)
Shenzhen Science and Technology Program(JCYJ20190809163407481)
PDF(8159 KB)

Accesses

Citation

Detail

Sections
Recommended

/