Preparation and Modification of MOF-Polymer Mixed Matrix Membrane and its Application in Pervaporation

Hao Zhang, Yanhui Wu

Prog Chem ›› 2023, Vol. 35 ›› Issue (8) : 1154-1167.

PDF(6840 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6840 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (8) : 1154-1167. DOI: 10.7536/PC230111
Review

Preparation and Modification of MOF-Polymer Mixed Matrix Membrane and its Application in Pervaporation

Author information +
History +

Abstract

Pervaporation is a membrane separation technology with the advantages of low energy consumption and easy operation. At present, the traditional polymer pervaporation membrane still lacks in separation performance and stability. Metal-organic framework (MOF) is a crystalline porous material formed by self-assembly of metal ions and organic ligands. It has unique properties such as selective adsorption of target molecules and molecular sieving effect. In recent years, many studies have shown that the introduction of MOF as a filler into the polymer matrix to construct mixed matrix membranes (MMMs) has a good effect on its pervaporation performance. Starting from different series of MOF, this paper discusses the types of MOF suitable for pervaporation mixed matrix membrane, analyzes the preparation methods and modification strategies of MOF-polymer mixed matrix membrane, and reviews the application progress of this kind of mixed matrix membrane in pervaporation (dehydration of organic solvent, recovery of organic matter from dilute solution, separation of organic mixture). The challenges in the research of MOF-polymer mixed matrix membrane for pervaporation are summarized, and its future development is prospected.

Contents

1 Introduction

2 Different series of MOFs for pervaporation

2.1 Introduction of different series of MOFs

2.2 Selection of MOF fillers

3 Preparation and modification strategies of MOF based MMMs

3.1 Preparation methods of MOF based MMMs

3.2 Modification strategies of MOF based MMMs

4 Application of MOF based MMMs in pervaporation

4.1 Solvent dehydration

4.2 Recovery of organic compounds from diluted aqueous solutions

4.3 organic-organic mixture separation

5 Conclusion and outlook

Key words

pervaporation / metal-organic framework / mixed matrix membrane / modification

Cite this article

Download Citations
Hao Zhang , Yanhui Wu. Preparation and Modification of MOF-Polymer Mixed Matrix Membrane and its Application in Pervaporation[J]. Progress in Chemistry. 2023, 35(8): 1154-1167 https://doi.org/10.7536/PC230111

References

[1]
Brennecke J F, Freeman B. Science, 2020, 369(6501): 254.
[2]
Li H, Zhao Z Y, Xiouras C, Stefanidis G D, Li X G, Gao X. Renew. Sustain. Energy Rev., 2019, 114: 109316.
[3]
Li X, Shen S T, Xu Y Y, Guo T, Dai H L, Lu X W. Sci. Total Environ., 2021, 767: 144346.
[4]
Seo H, Koh D Y. Science, 2022, 376(6597): 1053.
[5]
Yang C, Long M Y, Ding C T, Zhang R N, Zhang S Y, Yuan J Q, Zhi K D, Yin Z Y, Zheng Y, Liu Y W, Wu H, Jiang Z Y. Nat. Commun., 2022, 13: 7334.
[6]
Ismail N, Venault A, Mikkola J P, Bouyer D, Drioli E, Kiadeh N T H. J. Membr. Sci., 2020, 597: 117601.
[7]
Xu L H, Li S H, Mao H, Li Y, Zhang A S, Wang S, Liu W M, Lv J, Wang T, Cai W W, Sang L, Xie W W, Pei C, Li Z Z, Feng Y N, Zhao Z P. Science, 2022, 378(6617): 308.
[8]
Zhu T Y, Xu S, Yu F, Yu X, Wang Y. J. Membr. Sci., 2020, 598: 117681.
[9]
Kouser S, Hezam A, Khadri M J N, Khanum S A. J. Porous Mater., 2022, 29(3): 663.
[10]
Ong Y K, Shi G M, Le N L, Tang Y P, Zuo J, Nunes S P, Chung T S. Prog. Polym. Sci., 2016, 57: 1.
[11]
Diestel L, Wang N Y, Schwiedland B, Steinbach F, Giese U, Caro J. J. Membr. Sci., 2015, 492: 181.
[12]
Ge L, Zhou W, Rudolph V, Zhu Z H. J. Mater. Chem. A, 2013, 1(21): 6350.
[13]
Yan B Y, Li X F, Huang W Q, Wang X Y, Zhang Z, Zhu B. Progress in Chemistry, 2022, 34(11): 2417.
(闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 化学进展, 2022, 34(11): 2417.).
[14]
Chen L Z, Gong Q B, Chen Z. Prog. Chem., 2021, 33(8): 1280.
(陈立忠, 龚巧彬, 陈哲. 化学进展, 2021, 33(8): 1280.).
[15]
Takamizawa S, Saito T, Akatsuka T, Nakata E. Inorg. Chem. 2005, 44(5): 1421.
[16]
Takamizawa S, Kachi-Terajima C, Kohbara M A, Akatsuka T, Jin T. Chem. Asian J., 2007, 2(7): 837.
[17]
Basu S, Cano-Odena A, Vankelecom I F J. J. Membr. Sci., 2010, 362(1/2): 478.
[18]
Xu X, Nikolaeva D, Hartanto Y, Luis P. Sep. Purif. Technol., 2021, 278: 119233.
[19]
Erucar I, Keskin S. Ind. Eng. Chem. Res., 2011, 50(22): 12606.
[20]
Keskin S, Sholl D S. Energy Environ. Sci., 2010, 3(3): 343.
[21]
Liu X W, Sun T J, Hu J L, Wang S D. J. Mater. Chem. A, 2016, 4(10): 3584.
[22]
Mai Z H, Liu D X. Cryst. Growth Des., 2019, 19(12): 7439.
[23]
Cheng X, Liao Y, Lei Z, Li J, Fan X L, Xiao X. J. Membr. Sci., 2023, 672: 121430.
[24]
Gulcay-Ozcan E, Erucar I. Ind. Eng. Chem. Res., 2019, 58(8): 3225.
[25]
Lahoz-Martín F D, Calero S, GutiÉrrez-Sevillano J J, Martin-Calvo A. Microporous Mesoporous Mater., 2017, 248: 40.
[26]
Naik P V, Wee L H, Meledina M, Turner S, Li Y B, van Tendeloo G, Martens J A, Vankelecom I F J. J. Mater. Chem. A, 2016, 4(33): 12790.
[27]
Wang X L, Chen J X, Fang M Q, Wang T, Yu L X, Li J D. Sep. Purif. Technol., 2016, 163: 39.
[28]
Zhang H, Wang Y. Aiche J., 2016, 62(5): 1728.
[29]
Zhang H F, James J, Zhao M, Yao Y, Zhang Y S, Zhang B Q, Lin Y S. J. Membr. Sci., 2017, 532: 1.
[30]
Zhu T Y, Zhao X X, Yi M, Xu S, Wang Y. Adv. Compos. Hybrid Mater., 2022, 5(1): 91.
[31]
Ebrahimi M, Mansournia M. Mater. Lett., 2017, 189: 243.
[32]
Stephenson C J, Hupp J T, Farha O K. Inorg. Chem. Front., 2015, 2(5): 448.
[33]
Bhattacharjee S, Lee Y R, Ahn W S. CrystEngComm, 2015, 17(12): 2575.
[34]
Zhou T T, Sang Y T, Wang X X, Wu C Y, Zeng D W, Xie C S. Sens. Actuat. B Chem., 2018, 258: 1099.
[35]
Kasik A, James J, Lin Y S. Ind. Eng. Chem. Res., 2016, 55(10): 2831.
[36]
An H, Park S, Kwon H T, Jeong H K, Lee J S. J. Membr. Sci., 2017, 526: 367.
[37]
Qiao Z H, Liang Y Y, Zhang Z Q, Mei D H, Wang Z, Guiver M D, Zhong C L. Adv. Mater., 2020, 32(34): 2002165.
[38]
Rodenas T, van Dalen M, Serra-Crespo P, Kapteijn F, Gascon J. Microporous Mesoporous Mater., 2014, 192: 35.
[39]
Nuhnen A, Klopotowski M, Jeazet H B T, Sorribas S, Zornoza B, TÉllez C, Coronas J, Janiak C. Dalton Trans., 2020, 49(6): 1822.
[40]
Rodenas T, van Dalen M, García-PÉrez E, Serra-Crespo P, Zornoza B, Kapteijn F, Gascon J. Adv. Funct. Mater., 2014, 24(2): 249.
[41]
Jeazet H B T, Staudt C, Janiak C. Chem. Commun., 2012, 48(15): 2140.
[42]
Peng J J, Sun Y W, Wu Y, Lv Z Q, Li Z. Ind. Eng. Chem. Res., 2019, 58(19): 8290.
[43]
Peng Y G, Zhang Y X, Huang H L, Zhong C L. Chem. Eng. J., 2018, 333: 678.
[44]
Siwaipram S, Bopp P A, Keupp J, Pukdeejorhor L, Soetens J C, Bureekaew S, Schmid R. J. Phys. Chem. C, 2021, 125(23): 12837.
[45]
Huang S, Yang K L, Liu X F, Pan H, Zhang H, Yang S. RSC Adv., 2017, 7(10): 5621.
[46]
Wickenheisser M, Jeremias F, Henninger S K, Janiak C. Inorganica Chimica Acta, 2013, 407: 145.
[47]
Mahdipoor H R, Halladj R, Ganji Babakhani E, Amjad-Iranagh S, Sadeghzadeh Ahari J. RSC Adv., 2021, 11(9): 5192.
[48]
Li Y Q, Gao Q, Zhang L J, Zhou Y S, Zhong Y X, Ying Y, Zhang M C, Huang C Q, Wang Y A. Dalton Trans., 2018, 47(18): 6394.
[49]
Yang W J, Liang W B, O’Dell L A, Toop H D, Maddigan N, Zhang X M, Kochubei A, Doonan C J, Jiang Y J, Huang J. JACS Au, 2021, 1(12): 2172.
[50]
Chen Y W, Qiao Z W, Huang J L, Wu H X, Xiao J, Xia Q B, Xi H X, Hu J, Zhou J, Li Z. ACS Appl. Mater. Interfaces, 2018, 10(44): 38638.
[51]
Feng D W, Gu Z Y, Li J R, Jiang H L, Wei Z W, Zhou H C. Angewandte Chemie Int. Ed., 2012, 51(41): 10307.
[52]
Bonnett B L, Smith E D, de La Garza M, Cai M, Haag J V IV, Serrano J M, Cornell H D, Gibbons B, Martin S M, Morris A J. ACS Appl. Mater. Interfaces, 2020, 12(13): 15765.
[53]
Chen Y W, Qiao Z W, Wu H X, Lv D F, Shi R F, Xia Q B, Zhou J, Li Z. Chem. Eng. Sci., 2018, 175: 110.
[54]
Zhang Y M, Yang X Y, Zhou H C. Dalton Trans., 2018, 47(34): 11806.
[55]
Feng D W, Wang K C, Su J, Liu T F, Park J, Wei Z W, Bosch M, Yakovenko A, Zou X D, Zhou H C. Angewandte Chemie Int. Ed., 2015, 54(1): 149.
[56]
Zhang H Y, Meng Q, Li H J, Wu G G, Li K, Xu J H, Wang L L, Wu J, Meng X R, Hou H W. CrystEngComm, 2022, 24(43): 7611.
[57]
Anjum M W, Vermoortele F, Laeeq Khan A, Bueken B, de Vos D E, Vankelecom I F J. ACS Appl. Mater. Interfaces, 2015, 7(45): 25193.
[58]
Zhang M M, Sun Q, Wang Y J, Shan W J, Lou Z N, Xiong Y. Chem. Eng. J., 2021, 421: 129748.
[59]
Jiang Y Z, Liu C Y, Caro J, Huang A S. Microporous Mesoporous Mater., 2019, 274: 203.
[60]
Friebe S, Geppert B, Steinbach F, Caro J. ACS Appl. Mater. Interfaces, 2017, 9(14): 12878.
[61]
Kim S, Lee H E, Suh J M, Lim M H, Kim M. Inorg. Chem., 2020, 59(23): 17573.
[62]
Lin S Y, Ravari A K, Zhu J, Usov P M, Cai M, Ahrenholtz S R, Pushkar Y, Morris A J. ChemSusChem, 2018, 11(2): 464.
[63]
Wang N X, Zhang G J, Wang L, Li J, An Q F, Ji S L. Sep. Purif. Technol., 2017, 186: 20.
[64]
Min J, Qu X L, Yan B. Anal., 2021, 146(9): 3052.
[65]
Li Y H, Liu M Y, Wei Y W, Wang C C, Wang P. Environ. Sci.: Nano, 2023, 10(2): 672.
[66]
Zhao M T, Huang Y, Peng Y W, Huang Z Q, Ma Q L, Zhang H. Chem. Soc. Rev., 2018, 47(16): 6267.
[67]
Zhu X, Tian C C, Do-Thanh C L, Dai S. ChemSusChem, 2017, 10(17): 3304.
[68]
Cheng Y D, Wang X R, Jia C K, Wang Y X, Zhai L Z, Wang Q, Zhao D. J. Membr. Sci., 2017, 539: 213.
[69]
Peng Y, Yang W S. Adv. Mater. Interfaces, 2020, 7(1): 1901514.
[70]
Yao A Y, Hua D, Zhao F G, Zheng D Y, Pan J Y, Hong Y P, Liu Y, Rao X P, Zhou S F, Zhan G W. Sep. Purif. Technol., 2022, 282: 120022.
[71]
Dong X L, Lin Y S. Chem. Commun., 2013, 49(12): 1196.
[72]
Wang C, Zhou D D, Gan Y W, Zhang X W, Ye Z M, Zhang J P. Natl. Sci. Rev., 2021, 8: nwaa094.
[73]
Wu G R, Li Y L, Geng Y Z, Lu X Y, Jia Z Q. J. Chem. Technol. Biotechnol., 2019, 94(3): 973.
[74]
Zheng H A, Wang D R, Sun X, Jiang S Y, Liu Y, Zhang D Q, Zhang L Z. Chem. Eng. J., 2021, 411: 128524.
[75]
Rajati H, Navarchian A H, Tangestaninejad S. Chem. Eng. Sci., 2018, 185: 92.
[76]
Sánchez-Laínez J, Pardillos-Ruiz A, Carta M, Malpass-Evans R, McKeown N B, TÉllez C, Coronas J. Sep. Purif. Technol., 2019, 224: 456.
[77]
Chen K, Xu K, Xiang L, Dong X, Han Y, Wang C Q, Sun L B, Pan Y C. J. Membr. Sci., 2018, 563: 360.
[78]
Knebel A, Bavykina A, Datta S J, Sundermann L, Garzon-Tovar L, Lebedev Y, Durini S, Ahmad R, Kozlov S M, Shterk G, Karunakaran M, Daniela Carja I, Simic D, Weilert I, Klüppel M, Giese U, Cavallo L, Rueping M, Eddaoudi M, Caro J, Gascon J. Nat. Mater., 2020, 19(12): 1346.
[79]
Zhao C, Ji S L, Wang N X, Shu L, Liu H X, Li J R. Membr. Sci. Technol., 2017, 37(6): 32.
(赵翠, 纪树兰, 王乃鑫, 束伦, 刘红霞, 李建荣. 膜科学与技术, 2017, 37(6): 32.).
[80]
Askari M, Chung T S. J. Membr. Sci., 2013, 444: 173.
[81]
Chen X Y, Hoang V T, Rodrigue D, Kaliaguine S. RSC Adv., 2013, 3(46): 24266.
[82]
Wang Z G, Tian Y Y, Fang W X, Shrestha B B, Huang M H, Jin J. ACS Appl. Mater. Interfaces, 2021, 13(2): 3166.
[83]
Han Z T, Zhao Y X, Jiang H J, Sheng A, Li H, Jia H, Yun Z Y, Wei Z, Wang H Y. ACS Appl. Nano Mater., 2022, 5(1): 183.
[84]
Si Z H, Li J F, Ma L, Cai D, Li S F, Baeyens J, Degrève J, Nie J, Tan T W, Qin P Y. Angewandte Chemie Int. Ed., 2019, 58(48): 17175.
[85]
Hao L, Li P, Yang T X, Chung T S. J. Membr. Sci., 2013, 436: 221.
[86]
Zhang X, Tong Z W, Liu C, Ye L, Zhou Y W, Meng Q, Zhang G L, Gao C J. ACS Omega, 2022, 7(18): 15786.
[87]
Ding X L, Li X, Zhao H Y, Wang R, Zhao R Q, Li H, Zhang Y Z. Chin. J. Chem. Eng., 2018, 26: 501.
[88]
Penkova A V, Kuzminova A I, Dmitrenko M E, Surkova V A, Liamin V P, Markelov D A, Komolkin A V, Poloneeva D Y, Laptenkova A V, Selyutin A A, Mazur A S, Emeline A V, Thomas S, Ermakov S S. Sep. Purif. Technol., 2021, 263: 118370.
[89]
Yin H D, Cay-Durgun P, Lai T M, Zhu G H, Engebretson K, Setiadji R, Green M D, Laura Lind M. Polymer, 2020, 195: 122379.
[90]
Ziaul Mustafa M, bin Mukhtar H, Md Nordin N A H, Mannan H A, Nasir R, Fazil N. Chem. Eng. Technol., 2019, 42(12): 2580.
[91]
Lin R J, Ge L, Diao H, Rudolph V, Zhu Z H. ACS Appl. Mater. Interfaces, 2016, 8(46): 32041.
[92]
Tang W Y, Lou H, Li Y F, Kong X B, Wu Y H, Gu X H. J. Membr. Sci., 2019, 581: 93.
[93]
Zhang A S, Li S H, Ahmad A, Mao H, Xu L H, Zhao Z P. J. Membr. Sci., 2021, 619: 118807.
[94]
Zhang A S, Li S H, Mao H, Xu L H, Lv M Y, Zhao Z P. Adv. Membr., 2021, 1: 100006.
[95]
Li S F, Chen Z, Yang Y H, Si Z H, Li P, Qin P Y, Tan T W. Sep. Purif. Technol., 2019, 215: 163.
[96]
Xu L H, Li Y, Li S H, Lv M Y, Zhao Z P. J. Membr. Sci., 2022, 656: 120605.
[97]
Zhong H, Xie H R, Ma X H, Xu Z L. Membr. Sci. Technol., 2019, 39(3): 79.
(仲华, 谢浩然, 马晓华, 许振良. 膜科学与技术, 2019, 39(3): 79.).
[98]
Fazlifard S, Mohammadi T, Bakhtiari O. Chem. Eng. Technol., 2017, 40(4): 648.
[99]
Benzaqui M, Semino R, Carn F, Tavares S R, Menguy N, GimÉnez-MarquÉs M, Bellido E, Horcajada P, Berthelot T, Kuzminova A I, Dmitrenko M E, Penkova A V, Roizard D, Serre C, Maurin G, Steunou N. ACS Sustainable Chem. Eng., 2019, 7(7): 6629.
[100]
Zhang X, Cheng F Y, Zhang H Z, Xu Z L, Xue S M, Ma X H, Xu X R. J. Membr. Sci., 2020, 601: 117916.
[101]
Lin G S, Chen Y R, Chang T H, Huang T C, Zhuang G L, Huang W Z, Liu Y C, Matsuyama H, Wu K C W, Tung K L. J. Membr. Sci., 2021, 621: 118935.
[102]
Shi G M, Yang T X, Chung T S. J. Membr. Sci., 2012, 415-416: 577.
[103]
Hua D, Ong Y K, Wang Y, Yang T X, Chung T S. J. Membr. Sci., 2014, 453: 155.
[104]
Sorribas S, Kudasheva A, Almendro E, Zornoza B, de la Iglesia Ó, TÉllez C, Coronas J. Chem. Eng. Sci., 2015, 124: 37.
[105]
Xu Y M, Chung T S. J. Membr. Sci., 2017, 531: 16.
[106]
Su Z B, Chen J H, Sun X, Huang Y H, Dong X F. RSC Adv., 2015, 5(120): 99008.
[107]
Zhang W X, Ying Y P, Ma J, Guo X Y, Huang H L, Liu D H, Zhong C L. J. Membr. Sci., 2017, 527: 8.
[108]
Xu Y M, Japip S, Chung T S. J. Membr. Sci., 2018, 549: 217.
[109]
Vinu M, Senthil Raja D, Jiang Y C, Liu T Y, Xie Y Y, Lin Y F, Yang C C, Lin C H, Alshehri S M, Ahamad T, Salunkhe R R, Yamauchi Y, Deng Y H, Wu K C W. J. Taiwan Inst. Chem. Eng., 2018, 83: 143.
[110]
Mao H, Zhen H G, Ahmad A, Zhang A S, Zhao Z P. J. Membr. Sci., 2019, 573: 344.
[111]
Si Z H, Cai D, Li S F, Li G Z, Wang Z, Qin P Y. Sep. Purif. Technol., 2019, 221: 286.
[112]
Xu L H, Li S H, Mao H, Zhang A S, Cai W W, Wang T, Zhao Z P. J. Mater. Chem. A, 2021, 9(19): 11853.
[113]
Li J, Wang N X, Yan H, Ji S L, Zhang G J. RSC Adv., 2014, 4(104): 59750.
[114]
Li Y B, Wee L H, Martens J A, Vankelecom I F J. J. Mater. Chem. A, 2014, 2(26): 10034.
[115]
Liu S N, Liu G P, Zhao X H, Jin W Q. J. Membr. Sci., 2013, 446: 181.
[116]
Liu S N, Liu G P, Shen J, Jin W Q. Sep. Purif. Technol., 2014, 133: 40.
[117]
Li Q Q, Cheng L, Shen J, Shi J Y, Chen G N, Zhao J, Duan J G, Liu G P, Jin W Q. Sep. Purif. Technol., 2017, 178: 105.
[118]
Mao H, Zhen H G, Ahmad A, Li S H, Liang Y, Ding J F, Wu Y, Li L Z, Zhao Z P. J. Membr. Sci., 2019, 582: 307.
[119]
Liu W, Ban Y J, Liu J Y, Wang Y C, Hu Z Y, Wang Y H, Li Q M, Yang W S. Sep. Purif. Technol., 2021, 276: 119085.
[120]
Jin H, Liu X L, Ban Y J, Peng Y, Jiao W M, Wang P, Guo A, Li Y S, Yang W S. Chem. Eng. J., 2016, 305: 12.
[121]
Mao H, Li S H, Zhang A S, Xu L H, Lu H X, Lv J, Zhao Z P. Sep. Purif. Technol., 2021, 272: 118813.
[122]
Xu X, Hartanto Y, Nikolaeva D, He Z R, Chergaoui S, Luis P. Sep. Purif. Technol., 2022, 293: 121085.
[123]
Zhu H P, Li R H, Liu G Z, Pan Y, Li J H, Wang Z G, Guo Y N, Liu G P, Jin W Q. J. Membr. Sci., 2022, 652: 120473.
[124]
Knozowska K, Thür R, Kujawa J, Kolesnyk I, Vankelecom I F J, Kujawski W. Sep. Purif. Technol., 2021, 264: 118315.
[125]
Msahel A, Galiano F, Pilloni M, Russo F, Hafiane A, Castro-Muñoz R, Kumar V B, Gedanken A, Ennas G, Porat Z, Scano A, Ben Hamouda S, Figoli A. Membranes, 2021, 11(1): 65.
[126]
Yu S N, Jiang Z Y, Li W D, Mayta J Q, Ding H, Song Y M, Li Z, Dong Z W, Pan F S, Wang B Y, Zhang P, Cao X Z. Chem. Eng. Process. Process. Intensif., 2018, 123: 12.
[127]
Shi W Y, Han X L, Bai F, Hua C, Cao X Z. Sep. Purif. Technol., 2021, 272: 118924.
[128]
Gao G K, Wang Y R, Zhu H J, Chen Y F, Yang R X, Jiang C, Ma H Y, Lan Y Q. Adv. Sci., 2020, 7(24): 2002190.

Funding

National Key Research and Development Program of China(2019YFC0408200)
National Natural Science Foundation of China(22078249)
PDF(6840 KB)

Accesses

Citation

Detail

Sections
Recommended

/