Metal-Organic Framework-Based Nanozymes for Clinical Applications

Wenhao Luo, Rui Yuan, Jinyuan Sun, Lianqun Zhou, Xiaohe Luo, Yang Luo

Prog Chem ›› 2023, Vol. 35 ›› Issue (9) : 1389-1398.

PDF(6715 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6715 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (9) : 1389-1398. DOI: 10.7536/PC230113
Review

Metal-Organic Framework-Based Nanozymes for Clinical Applications

Author information +
History +

Abstract

Enzymes are considered as natural biocatalysts, which catalyze many biochemical reactions with good catalytic efficiency, biocompatibility, and substrate specificity. The intrinsic limitations of natural enzymes such as low stability, high cost, and storage difficulty have led to the introduction of artificial enzymes that imitate the activity of natural enzymes. With the rapid development of nanomaterials in the recent decade, novel enzyme-mimicking nanomaterials (nanozymes) have attracted considerable attention from researchers. Nanozymes are defined as a class of artificial nanomaterials possessing intrinsic enzymes-like activities, which have the advantages of simple preparation processes, low cost and some environmental tolerance. However, most of them are limited by their low activity and relatively poor stability, leading to many difficulties in the application of biochemical analysis. Among them, metal-organic framework nanozymes (MOFs) have demonstrated a wide range of uses because of their evident favorable circumstances, including the large surface area and porosity for functionalization, uniform active sites, high catalytic activity and stability, simple and controllable synthesis and low cost. In this review, we provide a summary of the clinical detection application of MOFs in nucleic acid, protein and small molecules based on their different activity classification (peroxidase, oxidase, catalase, superoxide dismutase, and hydrolase). Finally, we look forward to the opportunities and challenges that MOFs will face in clinical detection, promoting their clinical application transformation.

Contents

1 Introduction

2 Classification of MOF nanozymes

2.1 Peroxidase

2.2 Oxidase

2.3 Catalase

2.4 Superoxide dismutase

2.5 Hydrolase

3 Application of MOF nanozymes in clinical detection

3.1 Application of MOF nanozymes in nucleic acid detection

3.2 Application of MOF nanozymes in protein detection

3.3 Application of MOF nanozymes in the detection of small molecule

4 Conclusion and outlook

4.1 Strengthening environmental stability

4.2 Enhancing substrate specificity

4.3 Enhancing the enzymes-like catalytic activity

Key words

clinical tests / metal-organic framework / nanozymes / nucleic acids testing / protein analysis

Cite this article

Download Citations
Wenhao Luo , Rui Yuan , Jinyuan Sun , et al . Metal-Organic Framework-Based Nanozymes for Clinical Applications[J]. Progress in Chemistry. 2023, 35(9): 1389-1398 https://doi.org/10.7536/PC230113

References

[1]
Wang Q, Astruc D. Chem. Rev., 2020, 120(2): 1438.
[2]
Arcus V L, van der Kamp M W, Pudney C R, Mulholland A J. Curr. Opin. Struct. Biol., 2020, 65: 96.
[3]
Zhang Y, Ge J, Liu Z. ACS Catal., 2015, 5(8): 4503.
[4]
Liang M, Yan X. Acc. Chem. Res., 2019, 52(8): 2190.
[5]
Ren X, Chen D, Wang Y, Li H, Zhang Y, Chen H, Li X, Huo M. J. Nanobiotechnology, 2022, 20(1): 92.
[6]
Wang S, McGuirk C M, d'Aquino A, Mason J A, Mirkin C A. Adv. Mater., 2018, 30(37): 1800202.
[7]
Wang L, Wang K, Wang X, Niu R, Chen X, Zhu Y, Sun Z, Yang J, Liu G, Luo Y. ACS Appl. Mater. Interfaces, 2023, 15(3): 3826.
[8]
Niu X, Li X, Lyu Z, Pan J, Ding S, Ruan X, Zhu W, Du D, Lin Y. Chem. Comm., 2020, 56(77): 11338.
[9]
Wang D, Jana D, Zhao Y. Acc. Chem. Res., 2020, 53(7): 1389.
[10]
Huang X, Zhang S, Tang Y, Zhang X, Bai Y, Pang H. Coord. Chem. Rev., 2021, 449: 214216.
[11]
Shu Y, Ye Q, Tan J, Lv H, Liu Z, Mo Q. ACS Appl. Nano Mater., 2022, 5(12): 17909.
[12]
Wang J, Zhou Y, Zeng M, Zhao Y, Zuo X, Meng F, Lv F, Lu Y. Environ. Res., 2022, 203: 111818.
[13]
Mao Z, Chen J, Wang Y, Xia J, Zhang Y, Zhang W, Zhu H, Hu X, Chen H. Nanoscale, 2022, 14(26): 9474.
[14]
Zandieh M, Liu J. Langmuir, 2022, 38(12): 3617.
[15]
Xia Y, Zhou J, Liu Y, Liu Y, Huang K, Yu H, Jiang X, Xiong X. Analyst, 2022, 147(23): 5355.
[16]
Han M, Ren M, Li Z, Qu L, Yu L. New J. Chem., 2022, 46(22): 10682.
[17]
Jiang D, Ni D, Rosenkrans Z T, Huang P, Yan X, Cai W. Chem. Soc. Rev., 2019, 48(14): 3683.
[18]
Xu D, Wu L, Yao H, Zhao L. Small, 2022, 18(37): 2203400.
[19]
Wang D, Zhao Y. Chem, 2021, 7(10): 2635.
[20]
Li L, Li H, Shi L, Shi L, Li T. Langmuir, 2022, 38(23): 7272.
[21]
Wu T, Huang S, Yang H, Ye N, Tong L, Chen G, Zhou Q, Ouyang G. ACS Mater. Lett., 2022, 4(4): 751.
[22]
Li S, Zhou Z, Tie Z, Wang B, Ye M, Du L, Cui R, Liu W, Wan C, Liu Q, Zhao S, Wang Q, Zhang Y, Zhang S, Zhang H, Du Y, Wei H. Nat. Commun., 2022, 13(1): 827.
[23]
Dai S, Simms C, Dovgaliuk I, Patriarche G, Tissot A, Parac-Vogt T N, Serre C. Chem. Mater., 2021, 33(17): 7057.
[24]
Ly H G T, Fu G, Kondinski A, Bueken B, De Vos D, Parac-Vogt T N. J. Am. Chem. Soc., 2018, 140(20): 6325.
[25]
Thakur B, Karve V V, Sun D T, Semrau A L, Weiß L J K, Grob L, Fischer R A, Queen W L, Wolfrum B. Adv. Mater. Technol., 2021, 6(5): 2001048.
[26]
Liu X, Yan Z, Zhang Y, Liu Z, Sun Y, Ren J, Qu X. ACS Nano, 2019, 13(5): 5222.
[27]
Yuan A, Lu Y, Zhang X, Chen Q, Huang Y. J. Mater. Chem. B, 2020, 8(40): 9295.
[28]
Yang J, Dai H, Sun Y, Wang L, Qin G, Zhou J, Chen Q, Sun G. Anal. Bioanal. Chem., 2022, 414(9): 2971.
[29]
Cheng X, Zhou X, Zheng Z, Kuang Q. Chem. Eng. J., 2022, 430: 133079.
[30]
Lee J, Liao H, Wang Q, Han J, Han J H, Shin H E, Ge M, Park W, Li F. Exploration, 2022, 2(1): 20210086.
[31]
Mou X, Wu Q, Zhang Z, Liu Y, Zhang J, Zhang C, Chen X, Fan K, Liu H. Small Methods, 2022, 6(11): 2200997.
[32]
Kandathil V, Patil S A. Adv. Colloid Interface Sci., 2021, 294: 102485.
[33]
Loosen A, Simms C, Smolders S, De Vos D E, Parac-Vogt T N. ACS Appl. Nano Mater., 2021, 4(6): 5748.
[34]
Wang F, Chen L, Liu D, Ma W, Dramou P, He H. Trends Analyt. Chem., 2020, 133: 116080.
[35]
Chen G, Yu Y, Fu X, Wang G, Wang Z, Wu X, Ren J, Zhao Y. J. Colloid Interface Sci., 2022, 607(2): 1382.
[36]
Abdelhamid H N, Sharmoukh W. Microchem. J., 2021, 163: 105873.
[37]
He Z, Huang X, Wang C, Li X, Liu Y, Zhou Z, Wang S, Zhang F, Wang Z, Jacobson O, Zhu J J, Yu G, Dai Y, Chen X. Angew. Chem. Int. Ed., 2019, 58(26): 8752.
[38]
Liu Y, Cheng Y, Zhang H, Zhou M, Yu Y, Lin S, Jiang B, Zhao X, Miao L, Wei C W, Liu Q, Lin Y W, Du Y, Butch C J, Wei H. Sci. Adv., 2020, 6(29): eabb2695.
[39]
Lewandowski Ł, Kepinska M, Milnerowicz H. Eur. J. Clin. Invest., 2019, 49(1): e13036.
[40]
Zhang X, Li G, Chen G, Wu D, Wu Y, James T D. Adv. Funct. Mater., 2021, 31(50): 2106139.
[41]
Zhang L, Zhang Y, Wang Z, Cao F, Sang Y, Dong K, Pu F, Ren J, Qu X. Mater. Horizons, 2019, 6(8): 1682.
[42]
Dou Y, Yang L, Qin L, Dong Y, Zhou Z, Zhang D. J. Solid State Chem., 2021, 293: 121820.
[43]
Fan C, Tang Y, Wang H, Huang Y, Xu F, Yang Y, Huang Y, Rong W, Lin Y. Nanoscale, 2022, 14(22): 7985.
[44]
Liu J, Liang J, Xue J, Liang K. Small, 2021, 17(32): 2100300.
[45]
Fu T, Xu C, Guo R, Lin C, Huang Y, Tang Y, Wang H, Zhou Q, Lin Y. ACS Appl. Nano Mater., 2021, 4(4): 3345.
[46]
Chen J, Huang L, Wang Q, Wu W, Zhang H, Fang Y, Dong S. Nanoscale, 2019, 11(13): 5960.
[47]
Li S, Liu X, Chai H, Huang Y. Trends Analyt. Chem., 2018, 105: 391.
[48]
Wang X, Wang Y, Ying Y. Trends Analyt. Chem., 2021, 143: 116395.
[49]
Chen X, Jia M, Liu L, Qiu X, Zhang H, Yu X, Gu W, Qing G, Li Q, Hu X, Wang R, Zhao X, Zhang L, Wang X, Durkan C, Wang N, Wang G, Luo Y. Small, 2020, 16(40): 2002800.
[50]
Boonbanjong P, Treerattrakoon K, Waiwinya W, Pitikultham P, Japrung D. Biosensors, 2022, 12(9): 677.
[51]
Wei Z, Wang X, Feng H, Ji F, Bai D, Dong X, Huang W. Crit. Rev. Biotechnol., 2022: 1.
[52]
Bao J, Qiu X, Wang D, Yang H, Zhao J, Qi Y, Zhang L, Chen X, Yang M, Gu W, Huo D, Luo Y, Hou C. Adv. Funct. Mater., 2021, 31(14): 2006521.
[53]
Zhao X, Zhang L, Gao W, Yu X, Gu W, Fu W, Luo Y. ACS Appl. Mater. Interfaces, 2020, 12(32): 35958.
[54]
Kong L, Lv S, Qiao Z, Yan Y, Zhang J, Bi S. Biosens. Bioelectron., 2022, 207: 114188.
[55]
Li X, Li X, Li D, Zhao M, Wu H, Shen B, Liu P, Ding S. Biosens. Bioelectron., 2020, 168: 112554.
[56]
Li Y, Zhang C, He Y, Gao J, Li W, Cheng L, Sun F, Xia P, Wang Q. Biosens. Bioelectron., 2022, 203: 114051.
[57]
Zhang S, Xu S, Li X, Ma R, Cheng G, Xue Q, Wang H. Chem. Comm., 2020, 56(31): 4288.
[58]
Li Y, Yu C, Yang B, Liu Z, Xia P, Wang Q. Biosens. Bioelectron., 2018, 102: 307.
[59]
Wang Z, Zhang Y, Wang X, Han L. Biosens. Bioelectron., 2022, 206: 114120.
[60]
Yadav S, Kashaninejad N, Masud M K, Yamauchi Y, Nguyen N T, Shiddiky M J A. Biosens. Bioelectron., 2019, 139: 111315.
[61]
Ma Y, Song M, Li L, Lao X, Wong M C, Hao J. Exploration, 2022, 2(6): 20210216.
[62]
Wang Y, Zhu Y, Binyam A, Liu M, Wu Y, Li F. Biosens. Bioelectron., 2016, 86: 432.
[63]
Jiang J, Wang Y, Kan X. Microchem. J., 2022, 172: 106965.
[64]
Jiang J, Cai Q, Deng M. Front. Chem., 2022, 9: 1194.
[65]
Zeng Y, Wang M, Sun Z, Sha L, Yang J, Li G. J. Mater. Chem. B, 2022, 10(3): 450.
[66]
Feng J, Wang H, Ma Z. Microchim. Acta, 2020, 187(1): 95.
[67]
Wang L, Hu Z, Wu S, Pan J, Xu X, Niu X J A C A. Anal. Chim. Acta., 2020, 1121: 26.
[68]
Wang X, Jiang X, Wei H. J. Mater. Chem. B, 2020, 8(31): 6905.
[69]
Mao X, He F, Qiu D, Wei S, Luo R, Chen Y, Zhang X, Lei J, Monchaud D, Mergny J L, Ju H, Zhou J. Anal. Chem., 2022, 94(20): 7295.
[70]
Zhou X, Wang M, Wang M, Su X. ACS Appl. Nano Mater., 2021, 4(8): 7888.
[71]
Evans E H, Pisonero J, Smith C M M, Taylor R N. J. Anal. At Spectrom., 2020, 35(5): 830.
[72]
Vargas Medina D A, Pereira dos Santos N G, da Silva Burato J S, Borsatto J V B, Lanças F M. J. Chromatogr. A, 2021, 1641: 461989.
[73]
Adeel M, Asif K, Rahman M M, Daniele S, Canzonieri V, Rizzolio F. Adv. Funct. Mater., 2021, 31(52): 2106023.
[74]
Xu W, Jiao L, Yan H, Wu Y, Chen L, Gu W, Du D, Lin Y, Zhu C. ACS Appl. Mater. Interfaces, 2019, 11(25): 22096.
[75]
Wang L, Ling Y, Han L, Zhou J, Sun Z, Li N B, Luo H Q. Anal. Chim. Acta, 2020, 1131: 118.
[76]
Hu H, Li P, Wang Z, Du Y, Kuang G, Feng Y, Jia S, Cui J. J. Agric. Food Chem., 2022, 70(12): 3785.
[77]
Zeng X, Yan S, Liu B F. Microporous Mesoporous Mater., 2022, 335: 111826.
[78]
Xu Z, Long L L, Chen Y Q, Chen M L, Cheng Y H. Food Chem., 2021, 338: 128039.
[79]
Zhang Z, Liu Y, Huang P, Wu F Y, Ma L. Talanta, 2021, 232: 122411.
[80]
Wang L, Chen Y. ACS Appl. Mater. Interfaces, 2020, 12(7): 8351.
[81]
Zhu N, Liu C, Liu R, Niu X, Xiong D, Wang K, Yin D, Zhang Z. Anal. Chem., 2022, 94(11): 4821.

Funding

The National Key Research and Development Program of China(2022YFC2009600)
The National Key Research and Development Program of China(2022YFC2009603)
The National Science Fund for Distinguished Young Scholars(82125022)
The National Natural Science Foundation of China(82202633)
The National Natural Science Foundation of China(82072383)
The Chongqing Higher Education Teaching Reform Research Project(213035)
PDF(6715 KB)

Accesses

Citation

Detail

Sections
Recommended

/