Construction and Application of 3D Microfluidic Liver-On-A-Chip

Xueping Lu, Liang Zhao, Xiayan Wang, Guangsheng Guo

Prog Chem ›› 2023, Vol. 35 ›› Issue (9) : 1357-1368.

PDF(14991 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(14991 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (9) : 1357-1368. DOI: 10.7536/PC230116
Review

Construction and Application of 3D Microfluidic Liver-On-A-Chip

Author information +
History +

Abstract

As the largest internal organ in the human body, the liver plays an essential role in the metabolism. The liver or relevant diseases are one of the leading causes of death in the world, with the number of cases surging each year. Therefore, an in-depth understanding of the physiological and biochemical processes and pathological mechanisms of the liver is of great significance for the research, prevention, diagnosis, and treatment of liver-related or metabolism-related diseases. The in vitro liver culture model is an important experimental platform for the study of liver-related biological mechanisms. However, the traditional two-dimensional in vitro cell culture model makes it difficult to reproduce the complex physiological structure and microenvironment of the liver, and lack of disease characteristics. More importantly, the cell structure, gene expression, substance metabolism, and so on in the process of planar culture are significantly different from those in vivo. Microfluidic technology can simulate the physiological structure of liver by designing appropriate micro-structure, providing a microenvironment more like that in vivo by combining with three-dimensional liver tissue culture. Therefore, this paper summarizes the methods and latest progress in constructing 3D liver chips in vitro based on microfluidic technology, including porous membrane culture, hydrogel culture, cell spheroid-based culture, and 3D bioprinting. The applications of 3D cultured liver microchips in remodeling liver physiological structure, exploring mechanism and pathological mechanism, drug screening, and toxicity testing are further summarized. Finally, the potential value and challenges of 3D liver-on-a-chip are discussed.

Contents

1 Introduction

2 Construction methods for 3D microfluidic liver-on-a-chip

2.1 Porous membrane

2.2 Cell spheroids

2.3 Gel-based 3D culture

2.4 3D bioprinting

3 Application of 3D microfluidic liver-on-a-chip

3.1 Disease models

3.2 Drug screening

4 Conclusion and prospects

Key words

microfluidic chip / 3D cell culture / organ-on-a-chip / liver-on-a-chip / drug screening

Cite this article

Download Citations
Xueping Lu , Liang Zhao , Xiayan Wang , et al. Construction and Application of 3D Microfluidic Liver-On-A-Chip[J]. Progress in Chemistry. 2023, 35(9): 1357-1368 https://doi.org/10.7536/PC230116

References

[1]
Stanger B Z. Annu. Rev. Physiol., 2015, 77: 179.
[2]
Trefts E, Gannon M, Wasserman D H. Curr. Biol., 2017, 27(21): R1147.
[3]
Polidoro M A, Ferrari E, Marzorati S, Lleo A, Rasponi M. Liver Int., 2021, 41(8): 1744.
[4]
Kaplowitz N. Nat. Rev. Drug Discov., 2005, 4(6): 489.
[5]
Duncombe T A, Tentori A M, Herr A E. Nat. Rev. Mol. Cell Biol., 2015, 16(9): 554.
[6]
Whitesides G M. Nature, 2006, 442(7101): 368.
[7]
Huh D, Matthews B D, Mammoto A, Montoya-Zavala M, Hsin H Y, Ingber D E. Science, 2010, 328(5986): 1662.
[8]
Zhao L, Wang X Y. Trac Trends Anal. Chem., 2023, 158: 116864.
[9]
Bhatia S N, Ingber D E. Nat Biotechnol., 2014, 32: 760.
[10]
Zhang B., Radisic M. Lab Chip, 2017, 17: 2395.
[11]
Vunjak-Novakovic G, Ronaldson-Bouchard K, Radisic M. Cell, 2021, 184(18): 4597.
[12]
Zhang B Y, Korolj A, Lai B F L, Radisic M. Nat. Rev. Mater., 2018, 3(8): 257.
[13]
Kaur S, Kidambi S, Ortega-Ribera M, Thuy L T T, Nieto N, Cogger V C, Xie W F, Tacke F, Gracia-Sancho J. Cell. Mol. Gastroenterol. Hepatol., 2023, 15(3): 559.
[14]
Polini A, Prodanov L, Bhise N S, Manoharan V, Dokmeci M R, Khademhosseini A. Expert Opin. Drug Discov., 2014, 9(4): 335.
[15]
Ingber D E. Nat. Rev. Genet., 2022, 23(8): 467.
[16]
Li X, George S M, Vernetti L, Gough A H, Lansing Taylor D. Lab Chip, 2018, 18(17): 2614.
[17]
Moradi E, Jalili-Firoozinezhad S, Solati-Hashjin M. Acta Biomater., 2020, 116: 67.
[18]
Lin R Z, Chang H Y. Biotechnol. J., 2008, 3(9/10): 1172.
[19]
ZiÓłkowska K, Kwapiszewski R, BrzÓzka Z. New J. Chem., 2011, 35(5): 979.
[20]
Agrawal A A, Nehilla B J, Reisig K V, Gaborski T R, Fang D Z, Striemer C C, Fauchet P M, McGrath J L. Biomaterials, 2010, 31(20): 5408.
[21]
Zhao L, Xiu J D, Liu Y, Zhang T Y, Pan W J, Zheng X N, Zhang X J. Sci. Rep., 2019, 9: 19717.
[22]
Banaeiyan A A, Theobald J, Paukštyte J, Wölfl S, Adiels C B, Goksör M. Biofabrication, 2017, 9(1): 015014.
[23]
Wu J, Chen Q S, Liu W, He Z Y, Lin J M. TRAC Trends Anal. Chem., 2017, 87: 19.
[24]
Underhill G H, Khetani S R. Cell. Mol. Gastroenterol. Hepatol., 2018, 5(3): 426.
[25]
Deng J, Wei W B, Chen Z Z, Lin B C, Zhao W J, Luo Y, Zhang X L. Micromachines, 2019, 10(10): 676.
[26]
Fischbach C, Chen R, Matsumoto T, Schmelzle T, Brugge J S, Polverini P J, Mooney D J. Nat. Methods, 2007, 4(10): 855.
[27]
Fernandes R, Luo X L, Tsao C Y, Payne G F, Ghodssi R, Rubloff G W, Bentley W E. Lab Chip, 2010, 10(9): 1128.
[28]
Zheng Y B, Ma L D, Wu J L, Wang Y M, Meng X S, Hu P, Liang Q L, Xie Y Y, Luo G A. Talanta, 2022, 241: 123262.
[29]
Kim M Y, Li D J, Pham L K, Wong B G, Hui E E. J. Membr. Sci., 2014, 452: 460.
[30]
Rahimnejad M, Rasouli F, Jahangiri S, Ahmadi S, Rabiee N, Ramezani Farani M, Akhavan O, Asadnia M, Fatahi Y, Hong S, Lee J, Lee J M, Hahn S K. ACS Biomater. Sci. Eng., 2022, 8(12): 5038.
[31]
Hegde M, Jindal R, Bhushan A, Bale S S, McCarty W J, Golberg I, Usta O B, Yarmush M L. Lab Chip, 2014, 14(12): 2033.
[32]
Kim J, Lee C, Kim I, Ro J, Kim J, Min Y, Park J, Sunkara V, Park Y S, Michael I, Kim Y A, Lee H J, Cho Y K. ACS Nano, 2020, 14(11): 14971.
[33]
Kang Y B, Sodunke T R, Lamontagne J, Cirillo J, Rajiv C, Bouchard M J, Noh M. Biotechnol. Bioeng., 2015, 112(12): 2571.
[34]
Rennert K, Steinborn S, Gröger M, Ungerböck B, Jank A M, Ehgartner J, Nietzsche S, Dinger J L, Kiehntopf M, Funke H, Peters F T, Lupp A, Gärtner C, Mayr T, Bauer M, Huber O, Mosig A S. Biomaterials, 2015, 71: 119.
[35]
Du Y, Li N, Yang H, Luo C H, Gong Y X, Tong C F, Gao Y X, S Q, Long M. Lab Chip, 2017, 17(5): 782.
[36]
Bhise N S, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, Lang Q, Shrike Zhang Y, Shin S R, Calzone G, Annabi N, Shupe T D, Bishop C E, Atala A, Dokmeci M R, Khademhosseini A. Biofabrication, 2016, 8(1): 014101.
[37]
Lee G H, Lee J S, Lee G H, Joung W Y, Kim S H, Lee S H, Park J Y, Kim D H. Biofabrication, 2017, 10(1): 015001.
[38]
Lee G, Lee J, Oh H, Lee S. PLoS One, 2016, 11(8): e0161026.
[39]
Ma L D, Wang Y T, Wang J R, Wu J L, Meng X S, Hu P, Mu X, Liang Q L, Luo G A. Lab Chip, 2018, 18(17): 2547.
[40]
Meng Q, Wang Y, Li Y, Shen C. Biotechnol. Bioeng., 2021, 118: 612.
[41]
Lasli S, Kim H J, Lee K J, Suurmond C A E, Goudie M, Bandaru P, Sun W J, Zhang S M, Zhang N Y, Ahadian S, Dokmeci M R, Lee J M, Khademhosseini A. Adv. Biosys., 2019, 3(8): 1900104.
[42]
Bonanini F, Kurek D, Previdi S, Nicolas A, Hendriks D, Ruiter S, Meyer M, ClapÉs Cabrer M, Dinkelberg R, García S B, Kramer B, Olivier T, Hu H L, LÓpez-Iglesias C, Schavemaker F, Walinga E, Dutta D, Queiroz K, Domansky K, Ronden B, Joore J, Lanz H L, Peters P J, Trietsch S J, Clevers H, Vulto P. Angiogenesis, 2022, 25(4): 455.
[43]
de Hoyos-Vega J M, Hong H J, Loutherback K, Stybayeva G, Revzin A. Adv. Mater. Technol., 2023, 8(2): 2201121.
[44]
Wang Y Q, Liu H T, Zhang M, Wang H, Chen W W, Qin J H. Biomater. Sci., 2020, 8(19): 5476.
[45]
Ya S N, Ding W P, Li S B, Du K, Zhang Y Y, Li C P, Liu J, Li F F, Li P, Luo T Z, He L Q, Xu A, Gao D Y, Qiu B S. ACS Appl. Mater. Interfaces, 2021, 13(28): 32640.
[46]
Jin Y, Kim J, Lee J S, Min S, Kim S, Ahn D H, Kim Y G, Cho S W. Adv. Funct. Mater., 2018, 28(37): 1801954.
[47]
Kuang J J, Sun W, Zhang M, Kang L, Yang S L, Zhang H Y, Wang Y R, Hu P. Chin. Chem. Lett., 2023, 34(3): 107573.
[48]
Cui J, Wang H P, Zheng Z Q, Shi Q, Sun T, Huang Q, Fukuda T. Biofabrication, 2018, 11(1): 015016.
[49]
Ma C, Zhao L, Zhou E M, Xu J, Shen S F, Wang J Y. Anal. Chem., 2016, 88(3): 1719.
[50]
Chang R, Emami K, Wu H L, Sun W. Biofabrication, 2010, 2(4): 045004.
[51]
Zhang J, Chen F M, He Z Y, Ma Y, Uchiyama K, Lin J M. Analyst, 2016, 141(10): 2940.
[52]
Lee H, Cho D W. Lab Chip, 2016, 16(14): 2618.
[53]
Lee H, Chae S H, Kim J Y, Han W, Kim J, Choi Y, Cho D W. Biofabrication, 2019, 11(2): 025001.
[54]
Kang D G, Hong G, An S, Jang I, Yun W S, Shim J H, Jin S W. Small, 2020, 16(13): 1905505.
[55]
Janani G, Priya S, Dey S, Mandal B B. ACS Appl. Mater. Interfaces, 2022, 14(8): 10167.
[56]
Deng J, Chen Z Z, Zhang X L, Luo Y, Wu Z Z, Lu Y, Liu T J, Zhao W J, Lin B C. Biomed. Microdevices, 2019, 21(3): 57.
[57]
Lee J, Choi B, No D Y, Lee G, Lee S R, Oh H, Lee S H. Integr. Biol., 2016, 8(3): 302.
[58]
Wang Y Q, Wang H, Deng P W, Tao T T, Liu H T, Wu S, Chen W W, Qin J H. ACS Biomater. Sci. Eng., 2020, 6(10): 5734.
[59]
Du K, Li S B, Li C P, Li P, Miao C G, Luo T Z, Qiu B S, Ding W P. Acta Biomater., 2021, 134: 228.
[60]
Gori M, Simonelli M C, Giannitelli S M, Businaro L, Trombetta M, Rainer A. PLoS One, 2016, 11(7): e0159729.
[61]
Teng Y, Zhao Z X, Tasnim F, Huang X Z, Yu H. Biomaterials, 2021, 275: 120904.
[62]
Tao T T, Deng P W, Wang Y Q, Zhang X, Guo Y Q, Chen W W, Qin J H. Adv. Sci., 2022, 9(5): 2270029.
[63]
Lee S W L, Adriani G, Ceccarello E, Pavesi A, Tan A T, Bertoletti A, Dale Kamm R, Wong S C. Front. Immunol., 2018, 9: 416.
[64]
Ortega-Prieto A M, Skelton J K, Wai S N, Large E, Lussignol M, Vizcay-Barrena G, Hughes D, Fleck R A, Thursz M, Catanese M T, Dorner M. Nat. Commun., 2018, 9: 682.
[65]
Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, Pangalos M N. Nat. Rev. Drug Discov., 2014, 13(6): 419.
[66]
Mirahmad M, Sabourian R, Mahdavi M, Larijani B, Safavi M. Drug Metab. Rev., 2022, 54(2): 161.
[67]
Ma C, Peng Y S, Li H T, Chen W Q. Trends Pharmacol. Sci., 2021, 42(2): 119.
[68]
Zhang J, Wu J, Li H, Chen Q, Lin J M. Biosens. Bioelectron., 2015, 68: 322.
[69]
McAleer C W, Long C J, Elbrecht D, Sasserath T, Bridges L R, Rumsey J W, Martin C, Schnepper M, Wang Y, Schuler F, Roth A B, Funk C, Shuler M L, Hickman J J. Sci. Transl. Med., 2019, 11(497): eaav1386.
[70]
Jang K J, Otieno M A, Ronxhi J, Lim H K, Ewart L, Kodella K R, Petropolis D B, Kulkarni G, Rubins J E, Conegliano D, Nawroth J, Simic D, Lam W, Singer M, Barale E, Singh B, Sonee M, Streeter A J, Manthey C, Jones B, Srivastava A, Andersson L C, Williams D, Park H, Barrile R, Sliz J, Herland A, Haney S, Karalis K, Ingber D E, Hamilton G A. Sci. Transl. Med., 2019, 11(517): eaax5516.
[71]
Chen Y L, Gao D, Liu H X, Lin S, Jiang Y Y. Anal. Chim. Acta, 2015, 898: 85.
[72]
Au S H, Dean Chamberlain M, Mahesh S, Sefton M V, Wheeler A R. Lab Chip, 2014, 14(17): 3290.
[73]
Ai X N, Zhao L, Lu Y Y, Hou Y, Lv T, Jiang Y, Tu P F, Guo X Y. Anal. Chem., 2020, 92(17): 11696.
[74]
Frey O, Misun P M, Fluri D A, Hengstler J G, Hierlemann A. Nat. Commun., 2014, 5: 4250.
[75]
Oleaga C, Riu A, Rothemund S, Lavado A, McAleer C W, Long C J, Persaud K, Narasimhan N S, Tran M, Roles J, Carmona-Moran C A, Sasserath T, Elbrecht D H, Kumanchik L, Bridges L R, Martin C, Schnepper M T, Ekman G, Jackson M, Wang Y I, Note R, Langer J, Teissier S, Hickman J J. Biomaterials, 2018, 182: 176.
[76]
Rajan S A P, Aleman J, Wan M M, Pourhabibi Zarandi N, Nzou G, Murphy S, Bishop C E, Sadri-Ardekani H, Shupe T, Atala A, Hall A R, Skardal A. Acta Biomater., 2020, 106: 124.
[77]
Hou Y, Ai X N, Zhao L, Gao Z, Wang Y J, Lu Y, Tu P F, Jiang Y. Lab Chip, 2020, 20(14): 2482.
[78]
Ronaldson-Bouchard K, Teles D, Yeager K, Tavakol D N, Zhao Y M, Chramiec A, Tagore S, Summers M, Stylianos S, Tamargo M, Lee B M, Halligan S P, Abaci E H, Guo Z Y, JackÓw J, Pappalardo A, Shih J, Soni R K, Sonar S, German C, Christiano A M, Califano A, Hirschi K K, Chen C S, Przekwas A, Vunjak-Novakovic G. Nat. Biomed. Eng, 2022, 6(4): 351.
[79]
Herland A, Maoz B M, Das D, Somayaji M R, Prantil-Baun R, Novak R, Cronce M, Huffstater T, Jeanty S S F, Ingram M, Chalkiadaki A, Benson Chou D, Marquez S, Delahanty A, Jalili-Firoozinezhad S, Milton Y, Sontheimer-Phelps A, Swenor B, Levy O, Parker K K, Przekwas A, Ingber D E. Nat. Biomed. Eng., 2020, 4(4): 421.
[80]
Zhang Y S, Aleman J, Shin S R, Kilic T, Kim D, Ali Mousavi Shaegh S, Massa S, Riahi R, Chae S, Hu N, Avci H, Zhang W J, Silvestri A, Sanati Nezhad A, Manbohi A, De Ferrari F, Polini A, Calzone G, Shaikh N, Alerasool P, Budina E, Kang J, Bhise N, Ribas J, Pourmand A, Skardal A, Shupe T, Bishop C E, Dokmeci M R, Atala A, Khademhosseini A. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(12): E2293.

Funding

The National Natural Science Foundation of China(22174007)
The National Natural Science Foundation of China(22127805)
The Beijing Outstanding Young Scientist Program(BJJWZYJH01201910005017)
PDF(14991 KB)

Accesses

Citation

Detail

Sections
Recommended

/