Methanol to Olefins (MTO): A Condensed Matter Chemistry

Nan Wang, Yingxu Wei, Zhongmin Liu

Prog Chem ›› 2023, Vol. 35 ›› Issue (6) : 839-860.

PDF(35978 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(35978 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (6) : 839-860. DOI: 10.7536/PC230208
Review

Methanol to Olefins (MTO): A Condensed Matter Chemistry

Author information +
History +

Abstract

Catalysis is an essential component of condensed matter chemistry, with broad applications in contemporary industrial manufacturing and daily life. Methanol-to-olefins (MTO) reaction, facilitated by condensed-matter porous materials, represents a significant catalytic pathway for the production of light olefins from non-petroleum sources, exemplifying heterogeneous catalytic applications. Investigating reaction mechanisms and catalyst coking/decoking mechanisms is a central focus in catalysis research. The MTO reaction, transpiring within the confined spaces of zeolites and/or molecular sieves, encompasses a dynamic chemical process comprising an induction period, a highly efficient stage, catalyst deactivation, and catalyst regeneration. The formation, evolution, and degradation of active organic species and coke species within the nano-confined spaces of zeolites guide the course of the catalytic reaction. This feature review primarily highlights zeolite/molecular sieve catalysts for the MTO reaction, elucidating the structural-reaction-deactivation relationship based on host-guest chemistry, activation mechanisms of C1 reactants, the catalytic reaction network governed by dynamic mechanisms, chemistries involved in zeolite coking and decoking behavior, as well as the mechanisms of catalyst deactivation and regeneration. The ultimate aim is to provide a profound understanding of condensed matter chemistry in the context of heterogeneous methanol-to-olefins chemistry, thus advancing zeolite catalysis theory and fostering the development of efficient MTO catalysts and high-efficiency, low-carbon catalytic processes under the guidance of condensed matter chemistry.

Contents

1 Introduction

2 Catalysts for methanol-to-olefins

2.1 ZSM-5 catalyst with MFI topology structure

2.2 SAPO-34 with CHA topology structure

2.3 Other catalysts with 8-MR pore opening and cavity structure

3 Catalytic reaction mechanism for methanol conversion

3.1 Direct mechanism

3.2 Indirect mechanism

4 Mechanisms of catalyst deactivation/regeneration by zeolite coking/decoking for methanol conversion

4.1 Deactivation mechanism and chemistry involved in zeolite coking

4.2 Regeneration mechanism and chemistry involved in zeolite decoking

5 Conclusions and outlook

Key words

condensed matter chemistry / methanol-to-olefins / molecular sieve / reaction mechanism / catalyst deactivation / catalyst regeneration

Cite this article

Download Citations
Nan Wang , Yingxu Wei , Zhongmin Liu. Methanol to Olefins (MTO): A Condensed Matter Chemistry[J]. Progress in Chemistry. 2023, 35(6): 839-860 https://doi.org/10.7536/PC230208

References

[1]
Berzelius J J. Royal Swedisch Academy of Sciences, 1835.
[2]
Van Houten J. J. Chem. Educ., 2002, 79(2): 146.
[3]
Olmsted J III. J. Chem. Educ., 2010, 87(10): 1045.
[4]
Tian P, Wei Y X, Ye M, Liu Z M. ACS Catal., 2015, 5(3): 1922.
[5]
Li Y, Yu J H. Nat. Rev. Mater., 2021, 6(12): 1156.
[6]
Davis M E. Nature, 2002, 417(6891): 813.
[7]
Dusselier M, Davis M E. Chem. Rev., 2018, 118(11): 5265.
[8]
Busca G. Chem. Rev., 2007, 107(11): 5366.
[9]
Corma A. Chem. Rev., 1995, 95(3): 559.
[10]
Wang S, Chen Y Y, Wei Z H, Qin Z F, Liang T Y, Dong M, Li J F, Fan W B, Wang J G. J. Phys. Chem. C, 2016, 120(49): 27964.
[11]
Smit B, Maesen T L M. Chem. Rev., 2008, 108(10): 4125.
[12]
Smit B, Maesen T L M. Nature, 2008, 451(7179): 671.
[13]
Zhang W N, Wei Y X, Liu Z M. In The Chemical Transformations of C1 Compounds, 2022, DOI: 10.1002/9783527831883.ch3.
[14]
Argauer R J, Landolt G R. US3702886, 1972.
[15]
Haw J F, Song W G, Marcus D M, Nicholas J B. Acc. Chem. Res., 2003, 36(5): 317.
[16]
Hereijgers B P C, Bleken F, Nilsen M H, Svelle S, Lillerud K P, Bjørgen M, Weckhuysen B M, Olsbye U. J. Catal., 2009, 264(1): 77.
[17]
Conte M, Lopez-Sanchez J A, He Q, Morgan D J, Ryabenkova Y, Bartley J K, Carley A F, Taylor S H, Kiely C J, Khalid K, Hutchings G J. Catal. Sci. Technol., 2012, 2(1): 105.
[18]
Goguen P W, Xu T, Barich D H, Skloss T W, Song W G, Wang Z K, Nicholas J B, Haw J F. J. Am. Chem. Soc., 1998, 120(11): 2650.
[19]
Chen J L, Liang T Y, Li J F, Wang S, Qin Z F, Wang P F, Huang L Z, Fan W B, Wang J G. ACS Catal., 2016, 6(4): 2299.
[20]
Galletero M S, Corma A, Ferrer B, FornÉs V, García H. J. Phys. Chem. B, 2003, 107(5): 1135.
[21]
Margarit V J, Osman M, Al-Khattaf S, Martínez C, Boronat M, Corma A. ACS Catal., 2019, 9(7): 5935.
[22]
Wang N, Sun W J, Hou Y L, Ge B H, Hu L, Nie J Q, Qian W Z, Wei F. J. Catal., 2018, 360: 89.
[23]
Liu X L, Wang C M, Zhou J, Liu C, Liu Z C, Shi J, Wang Y D, Teng J W, Xie Z K. Chem. Soc. Rev., 2022, 51(19): 8174.
[24]
Shen B Y, Wang H Q, Xiong H, Chen X, Bosch E G T, Lazić I, Qian W Z, Wei F. Nature, 2022, 607(7920): 703.
[25]
Brent M, Celeste A, Patton R, Gajek R, Cannan T, Lanigen E, Lok B, Messina C, Flanigen E. EP103117-A1, 1984.
[26]
Lok B M, Messina C A, Patton R L, Gajek R T, Cannan T R, Flanigen E M. J. Am. Chem. Soc., 1984, 106(20): 6092.
[27]
Wang H D, Jiao F, Ding Y, Liu W J, Xu Z C, Pan X L, Bao X H. Natl. Sci. Rev., 2022, 9(9): nwac146.
[28]
Lin S F, Zhi Y C, Chen W, Li H, Zhang W N, Lou C Y, Wu X Q, Zeng S, Xu S T, Xiao J P, Zheng A M, Wei Y X, Liu Z M. J. Am. Chem. Soc., 2021, 143(31): 12038.
[29]
Olsbye U, Svelle S, Lillerud K P, Wei Z H, Chen Y Y, Li J F, Wang J G, Fan W B. Chem. Soc. Rev., 2015, 44(20): 7155.
[30]
Ye M, Tian P, Liu Z M. Engineering, 2021, 7(1): 17.
[31]
Gao B B, Yang M, Qiao Y Y, Li J Z, Xiang X, Wu P F, Wei Y X, Xu S T, Tian P, Liu Z M. Catal. Sci. Technol., 2016, 6(20): 7569.
[32]
Wu P F, Yang M, Zhang W N, Xu S T, Guo P, Tian P, Liu Z M. Chem. Commun., 2017, 53(36): 4985.
[33]
Sun Q M, Xie Z K, Yu J H. Natl. Sci. Rev., 2018, 5(4): 542.
[34]
Zhong J W, Han J F, Wei Y X, Xu S T, He Y L, Zheng Y J, Ye M, Guo X W, Song C S, Liu Z M. Chem. Commun., 2018, 54(25): 3146.
[35]
Arora S S, Nieskens D L S, Malek A, Bhan A. Nat. Catal., 2018, 1(9): 666.
[36]
Zhao X B, Li J Z, Tian P, Wang L Y, Li X F, Lin S F, Guo X W, Liu Z M. ACS Catal., 2019, 9(4): 3017.
[37]
Zhou J B, Zhi Y C, Zhang J L, Liu Z Q, Zhang T, He Y L, Zheng A M, Ye M, Wei Y X, Liu Z M. J. Catal., 2019, 377: 153.
[38]
van Vreeswijk S H, Weckhuysen B M. Joule, 2021, 5(4): 757.
[39]
Wang N, Wang L, Zhi Y C, Han J F, Zhang C W, Wu X Q, Zhang J L, Wang L Y, Fan B H, Xu S T, Zheng Y J, Lin S F, Wu R N, Wei Y X, Liu Z M. J. Energy Chem., 2023, 76: 105.
[40]
Zhou J B, Gao M B, Zhang J L, Liu W J, Zhang T, Li H, Xu Z C, Ye M, Liu Z M. Nat. Commun., 2021, 12: 17.
[41]
Zhou J B, Zhao J P, Zhang J L, Zhang T, Ye M, Liu Z M. Chin. J. Catal., 2020, 41(7): 1048.
[42]
Li J Z, Wei Y X, Chen J R, Xu S T, Tian P, Yang X F, Li B, Wang J B, Liu Z M. ACS Catal., 2015, 5(2): 661.
[43]
Yang M, Li B, Gao M B, Lin S F, Wang Y, Xu S T, Zhao X B, Guo P, Wei Y X, Ye M, Tian P, Liu Z M. ACS Catal., 2020, 10(6): 3741.
[44]
Pinilla-Herrero I, Olsbye U, Márquez-Álvarez C, Sastre E. J. Catal., 2017, 352: 191.
[45]
Yarulina I, Chowdhury A D, Meirer F, Weckhuysen B M, Gascon J. Nat. Catal., 2018, 1(6): 398.
[46]
Xu S T, Zhi Y C, Han J F, Zhang W N, Wu X Q, Sun T T, Wei Y X, Liu Z M. Advances in Catalysis. Amsterdam: Elsevier, 2017. 37.
[47]
Chen W, Li G C, Yi X F, Day S J, Tarach K A, Liu Z Q, Liu S B, Edman Tsang S C, GÓra-Marek K, Zheng A M. J. Am. Chem. Soc., 2021, 143(37): 15440.
[48]
Chowdhury A D, Houben K, Whiting G T, Mokhtar M, Asiri A M, Al-Thabaiti S A, Basahel S N, Baldus M, Weckhuysen B M. Angew. Chem. Int. Ed., 2016, 55(51): 15840.
[49]
Chu Y Y, Yi X F, Li C B, Sun X Y, Zheng A M. Chem. Sci., 2018, 9(31): 6470.
[50]
Comas-Vives A, Valla M, CopÉret C, Sautet P. ACS Cent. Sci., 2015, 1(6): 313.
[51]
Li J F, Wei Z H, Chen Y Y, Jing B Q, He Y, Dong M, Jiao H J, Li X K, Qin Z F, Wang J G, Fan W B. J. Catal., 2014, 317: 277.
[52]
Liu Y, Müller S, Berger D, Jelic J, Reuter K, Tonigold M, Sanchez-Sanchez M, Lercher J A. Angew. Chem. Int. Ed., 2016, 55(19): 5723.
[53]
Parvulescu A N, Mores D, Stavitski E, Teodorescu C M, Bruijnincx P C A, Gebbink R J M K, Weckhuysen B M. J. Am. Chem. Soc., 2010, 132(30): 10429.
[54]
Sun T T, Chen W, Xu S T, Zheng A M, Wu X Q, Zeng S, Wang N, Meng X J, Wei Y X, Liu Z M. Chem, 2021, 7(9): 2415.
[55]
Wang C, Chu Y Y, Xu J, Wang Q, Qi G D, Gao P, Zhou X, Deng F. Angew. Chem. Int. Ed., 2018, 57(32): 10197.
[56]
Wang W, Buchholz A, Seiler M, Hunger M. J. Am. Chem. Soc., 2003, 125(49): 15260.
[57]
Wu X Q, Xu S T, Zhang W N, Huang J D, Li J Z, Yu B W, Wei Y X, Liu Z M. Angew. Chem. Int. Ed., 2017, 56(31): 9039.
[58]
Yang L, Yan T T, Wang C M, Dai W L, Wu G J, Hunger M, Fan W B, Xie Z K, Guan N J, Li L D. ACS Catal., 2019, 9(7): 6491.
[59]
Svelle S, Joensen F, Nerlov J, Olsbye U, Lillerud K P, Kolboe S, Bjørgen M. J. Am. Chem. Soc., 2006, 128(46): 14770.
[60]
Zhang W N, Zhi Y C, Huang J D, Wu X Q, Zeng S, Xu S T, Zheng A M, Wei Y X, Liu Z M. ACS Catal., 2019, 9(8): 7373.
[61]
Gao S S, Xu S T, Wei Y X, Qiao Q L, Xu Z C, Wu X Q, Zhang M Z, He Y L, Xu S L, Liu Z M. J. Catal., 2018, 367: 306.
[62]
Goetze J, Meirer F, Yarulina I, Gascon J, Kapteijn F, Ruiz-Martínez J, Weckhuysen B M. ACS Catal., 2017, 7(6): 4033.
[63]
Guisnet M, Magnoux P. Appl. Catal., 1989, 54(1): 1.
[64]
Wang N, Zhi Y C, Wei Y X, Zhang W N, Liu Z Q, Huang J D, Sun T T, Xu S T, Lin S F, He Y L, Zheng A M, Liu Z M. Nat. Commun., 2020, 11: 1079.
[65]
Guisnet M. Deactivation and Regeneration of Zeolite Catalysts. Imperial College Press, 2011. 217.
[66]
Wang F, Damascene Harindintwali J, Yuan Z Z, Wang M, Wang F M, Li S, Yin Z G, Huang L, Fu Y H, Li L, Chang S X, Zhang L J, Rinklebe J, Yuan Z Q, Zhu Q G, Xiang L L, Tsang D C W, Xu L, Jiang X, Liu J H, Wei N, Kästner M, Zou Y, Ok Y S, Shen J L, Peng D L, Zhang W, BarcelÓ D, Zhou Y J, Bai Z H, Li B Q, Zhang B, Wei K, Cao H J, Tan Z L, Zhao L B, He X, Zheng J X, Bolan N, Liu X H, Huang C P, Dietmann S, Luo M, Sun N N, Gong J R, Gong Y L, Brahushi F, Zhang T T, Xiao C D, Li X F, Chen W F, Jiao N Z, Lehmann J, Zhu Y G, Jin H G, Schäffer A, Tiedje J M, Chen J M. Innov., 2021, 2(4): 100180.
[67]
Bartholomew C H. Appl. Catal. A Gen., 2001, 212(1/2): 17.
[68]
Bartholomew C, Argyle M. Catalysts, 2015, 5(2): 949.
[69]
Wu X Q, Xu S T, Wei Y X, Zhang W N, Huang J D, Xu S L, He Y L, Lin S F, Sun T T, Liu Z M. ACS Catal., 2018, 8(8): 7356.
[70]
Zhang W N, Zhang M Z, Xu S T, Gao S S, Wei Y X, Liu Z M. ACS Catal., 2020, 10(8): 4510.
[71]
Dessau R. J. Catal., 1982, 78(1): 136.
[72]
Mole T. J. Catal., 1983, 84(2): 435.
[73]
Mole T, Whiteside J A, Seddon D. Journal of Catalysis, 1983, 82 (2): 261.
[74]
Chen N, Reagan W. J. Catal., 1979, 59(1): 123.
[75]
Dahl I M, Kolboe S. J. Catal., 1994, 149(2): 458.
[76]
Dahl I M, Kolboe S. J. Catal., 1996, 161(1): 304.
[77]
Lesthaeghe D, HorrÉ A, Waroquier M, Marin G, Van Speybroeck V. Chem. Eur. J., 2009, 15(41): 10803.
[78]
Haw J F, Marcus D M. Top. Catal., 2005, 34(1/4): 41.
[79]
Bjørgen M, Lillerud K P, Olsbye U, Svelle S. In Studies in Surface Science and Catalysis, BellotNoronha F, SchmalM, FalabellaSousa-Aguiar E.Eds.; Elsevier, 2007. Vol. 167.
[80]
Bjorgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U. J. Catal., 2007, 249(2): 195.
[81]
Dai W L, Wang C M, Dyballa M, Wu G J, Guan N J, Li L D, Xie Z K, Hunger M. ACS Catal., 2015, 5(1): 317.
[82]
Castaño P. Catalysts, 2021, 11(7): 798.
[83]
Martín A J, Mitchell S, Mondelli C, Jaydev S, PÉrez-Ramírez J. Nat. Catal., 2022, 5(10): 854.
[84]
Chen D, Rebo H P, Moljord K, Holmen A. In Studies in Surface Science and Catalysis, BartholomewC H, FuentesG A.Eds. Elsevier, 1997. Vol. 111.
[85]
Guisnet M, Magnoux P. Catal. Today, 1997, 36(4): 477.
[86]
Guisnet M, Magnoux P. Appl. Catal. A Gen., 2001, 212(1/2): 83.
[87]
Vogt C, Weckhuysen B M. Nat. Rev. Chem., 2022, 6(2): 89.
[88]
Borodina E, Meirer F, Lezcano-González I, Mokhtar M, Asiri A M, Al-Thabaiti S A, Basahel S N, Ruiz-Martinez J, Weckhuysen B M. ACS Catal., 2015, 5(2): 992.
[89]
Borodina E, Sharbini Harun Kamaluddin H, Meirer F, Mokhtar M, Asiri A M, Al-Thabaiti S A, Basahel S N, Ruiz-Martinez J, Weckhuysen B M. ACS Catal., 2017, 7(8): 5268.
[90]
Yu B W, Zhang W N, Wei Y X, Wu X Q, Sun T T, Fan B H, Xu S T, Liu Z M. Chem. Commun., 2020, 56(58): 8063.
[91]
Wei Y X, Li J Z, Yuan C Y, Xu S T, Zhou Y, Chen J R, Wang Q Y, Zhang Q, Liu Z M. Chem. Commun., 2012, 48(25): 3082.
[92]
Müller S, Liu Y, Vishnuvarthan M, Sun X Y, van Veen A C, Haller G L, Sanchez-Sanchez M, Lercher J A. J. Catal., 2015, 325: 48.
[93]
Wennmacher J T C, Mahmoudi S, Rzepka P, Sik Lee S, Gruene T, Paunović V, van Bokhoven J A. Angewandte Chemie Int. Ed., 2022, 61(29): e202205413.
[94]
Lee S, Choi M. J. Catal., 2019, 375: 183.
[95]
Dahl I M, Mostad H, Akporiaye D, Wendelbo R. Microporous Mesoporous Mater., 1999, 29(1/2): 185.
[96]
Ilias S, Bhan A. ACS Catal., 2013, 3(1): 18.
[97]
Bleken F, Bjørgen M, Palumbo L, Bordiga S, Svelle S, Lillerud K P, Olsbye U. Top. Catal., 2009, 52(3): 218.
[98]
Yuen L T, Zones S I, Harris T V, Gallegos E J, Auroux A. Microporous Mater., 1994, 2(2): 105.
[99]
Guisnet M, Costa L, Ribeiro F R. J. Mol. Catal. A Chem., 2009, 305(1/2): 69.
[100]
Zhong J W, Han J F, Wei Y X, Tian P, Guo X W, Song C S, Liu Z M. Catal. Sci. Technol., 2017, 7(21): 4905.
[101]
Yang G J, Wei Y X, Xu S T, Chen J R, Li J Z, Liu Z M, Yu J H, Xu R R. J. Phys. Chem. C, 2013, 117(16): 8214.
[102]
Dai W L, Wu G J, Li L D, Guan N J, Hunger M. ACS Catal., 2013, 3(4): 588.
[103]
Vogt E T C, Weckhuysen B M. Chem. Soc. Rev., 2015, 44(20): 7342.
[104]
Wang A Y, Chen Y, Walter E D, Washton N M, Mei D H, Varga T, Wang Y L, Szanyi J, Wang Y, Peden C H F, Gao F. Nat. Commun., 2019, 10: 1137.
[105]
Zhang R D, Liu N, Lei Z G, Chen B H. Chem. Rev., 2016, 116(6): 3658.
[106]
Stanciakova K, Weckhuysen B M. Trends Chem., 2021, 3(6): 456.
[107]
Marchi A J, Froment G F. Appl. Catal., 1991, 71(1): 139.
[108]
Gayubo A G, Aguayo A T, Sánchez del Campo A E, Benito P L, Bilbao J. In Studies in Surface Science and Catalysis, Delmon B, Froment G F. Amsterdam: Elsevier, 1999. 126:129.
[109]
Wu X C, Anthony R G. Appl. Catal. A Gen., 2001, 218(1/2): 241.
[110]
De Wispelaere K, Wondergem C S, Ensing B, Hemelsoet K, Meijer E J, Weckhuysen B M, Van Speybroeck V, Ruiz-Martı?nez J. ACS Catal., 2016, 6(3): 1991.
[111]
Wang H Q, Hou Y L, Sun W J, Hu Q K, Xiong H, Wang T F, Yan B H, Qian W Z. ACS Catal., 2020, 10(9): 5288.
[112]
Liu G Y, Tian P, Li J Z, Zhang D Z, Zhou F, Liu Z M. Microporous Mesoporous Mater., 2008, 111(1/3): 143.
[113]
Yang L, Wang C, Zhang L N, Dai W L, Chu Y Y, Xu J, Wu G J, Gao M B, Liu W J, Xu Z C, Wang P F, Guan N J, Dyballa M, Ye M, Deng F, Fan W B, Li L D. Nat. Commun., 2021, 12: 4661.
[114]
Wang C, Yang L, Gao M B, Shao X, Dai W L, Wu G J, Guan N J, Xu Z C, Ye M, Li L D. J. Am. Chem. Soc., 2022, 144(46): 21408.
[115]
Watanabe Y, Koiwai A, Takeuchi H, Hyodo S A, Noda S. J. Catal., 1993, 143(2): 430.

Funding

The National Natural Science Foundation of China(22288101)
The National Natural Science Foundation of China(21991092)
The National Natural Science Foundation of China(21991090)
The Excellent Postdoctoral Support Program of Dalian Institute of Chemical Physics, CAS and the Excellent Research Assistant Funding Project of CAS
PDF(35978 KB)

Accesses

Citation

Detail

Sections
Recommended

/