Preparation and Extraction Application of Lithium Ion Selective Adsorption Materials

Xinyi Chen, Kaisheng Xia, Qiang Gao, Zhen Yang, Yudie Li, Yi Meng, Liang Chen, Chenglin Liu

Prog Chem ›› 2023, Vol. 35 ›› Issue (10) : 1519-1533.

PDF(7884 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(7884 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (10) : 1519-1533. DOI: 10.7536/PC230214
Review

Preparation and Extraction Application of Lithium Ion Selective Adsorption Materials

Author information +
History +

Abstract

In recent years, with the rapid advancement and large-scale application of lithium battery technology and electric vehicle, the market demand for lithium resource is growing sharply. However, due to insufficient mining degree and extraction technology, the total production capacity of ore lithium and brine lithium resources is far below the actual market demand. Extracting lithium from surface salt lake brine, deep brine and other liquid resources has the advantages of large resource potential and low extraction cost, which presents an important research direction in the lithium resource extraction field. Among available lithium extraction technologies, adsorption method is suitable for extracting lithium from low concentration and large volume liquid brine resources in China, and selective lithium ion adsorption materials are the core of adsorption method. In this review, we focus on the preparation and application of lithium ion selective adsorption materials for lithium extraction from brine. The preparation methods, adsorption properties and adsorption mechanisms of organic (crown ether), inorganic (aluminum-, manganese- and titanium-based adsorbents) and composite selective lithium adsorption materials are reviewed. This review provides a brief prospect for the design and development of new lithium adsorption materials, which may push forward the efficient extraction and utilization of lithium resources from salt lake brine.

Contents

1 Introduction

2 Crown ether adsorbents

2.1 Preparation of crown ether adsorbent

2.2 Selective lithium extraction performance

2.3 Selective lithium extraction mechanism

3 Alumina-based materials

3.1 Preparation of aluminum adsorbent

3.2 Selective lithium extraction mechanism of aluminum adsorbent

3.3 Selective lithium extraction performance of aluminum-based adsorbent

4 Lithium ion sieve adsorbent

4.1 Preparation of ion sieve adsorbent

4.2 Lithium ion insertion/extraction mechanism

4.3 Selective lithium extraction performanc of lithium ion sieve

4.4 Molded lithium ion sieve adsorbent

5 Other types of adsorbents

6 Conclusion and outlook

Key words

brine / lithium extract / adsorbent / ion sieve

Cite this article

Download Citations
Xinyi Chen , Kaisheng Xia , Qiang Gao , et al . Preparation and Extraction Application of Lithium Ion Selective Adsorption Materials[J]. Progress in Chemistry. 2023, 35(10): 1519-1533 https://doi.org/10.7536/PC230214

References

[1]
Liu G, Zhao Z W, Ghahreman A. Hydrometallurgy, 2019, 187: 81.
[2]
USGS. Mineral commodity summaries 2022, in: MineralCommodity Summaries, 2022.
[3]
Xu W M, Xiao J, Ding Y R. LAOQUJIANSHE, 2023, 3: 3.
(徐伟民, 肖坚, 丁冀荣. 老区建设, 2023, 3: 3.).
[4]
USGS. Reston, VA, 2023.
[5]
Chen L, Yang L, Liu T, Gao J, Hu Y B, Liu Y Q. Chem Eng Oil Gas, 2023, 52(2): 41.
(陈立, 杨立, 刘韬, 高杰, 胡永碧, 刘友权. 石油与天然气化工, 2023, 52(2): 41.).
[6]
Dai H Z, Wang D H, Liu S B, Li X, Wang C H, Liu Y. Acta Geologica Sinica, 2023, 97(2): 583.
(代鸿章, 王登红, 刘善宝, 李鑫, 王成辉, 孙艳. 地质学报, 2023, 97(2): 583.).
[7]
Nie Z, Wu Q, Ding T, Bu L Z, Wang Y S, Yu J J, Hou X H. Inorg. Chem. Ind., 2022, 54(10): 1.
(乜贞, 伍倩, 丁涛, 卜令忠, 王云生, 余疆江, 侯献华. 无机盐工业, 2022, 54(10): 1.).
[8]
Zhang Y X. China Econ. Week., 2023, 4: 42.
(张宇轩. 中国经济周刊, 2023, 4: 42).
[9]
Chen S Q, Nan X J, Zhang N, Li L, Yu X P, Guo Y F, Deng T L. J. Chem. Eng. Japan, 2019, 52(6): 508.
[10]
Zhang Y, Xu R, Wang L, Sun W. Miner. Eng., 2022, 180: 107468.
[11]
Zhao B, Guo M, Qian F R, Qian Z Q, Xu N C, Wu Z J, Liu Z. RSC Adv., 2020, 10(58): 35153.
[12]
Zhao B, Qian Z Q, Qiao Y J, Li J, Wu Z J, Liu Z. Chem. Eng. J., 2023, 451: 138870.
[13]
Li H W, Wang Y, Li T Y, Ren X K, Wang J X, Wang Z, Zhao S. Chem. Eng. J., 2022, 438: 135658.
[14]
Zhao Z W, Liu G, Jia H, He L H. J. Membr. Sci., 2020, 596: 117685.
[15]
Zhang H Z, Xu Z L, Sun J Y. RSC Adv., 2018, 8(51): 29455.
[16]
Yu C, Lu J, Dai J W, Dong Z Q, Lin X Y, Xing W D, Wu Y L, Ma Z F. J. Colloid Interface Sci., 2020, 572: 340.
[17]
Yu H W, Hossain S M, Wang C, Choo Y, Naidu G, Han D S, Shon H K. Desalination, 2023, 556: 116569.
[18]
Burgard M, Yaftian M R, Jeunesse C, Bagatin I, Matt D. J. Inclusion Phenom. Macrocycl. Chem., 2000, 38(1/4): 413.
[19]
Qian F R, Guo M, Qian Z Q, Zhao B, Li J, Wu Z J, Liu Z. Sep. Purif. Technol., 2021, 264: 118433.
[20]
Sun S Y, Zhang Q H, Yu J G. Journal of Inorganic Materials, 2010, 25: 626.
(孙淑英, 张钦辉, 于建国. 无机材料学报, 2010, 25: 626.).
[21]
Sun J, Li X W, Huang Y H, Luo G L, Tao D J, Yu J T, Chen L L, Chao Y H, Zhu W S. Chem. Eng. J., 2023, 453: 139485.
[22]
Pedersen C J. J. Am. Chem. Soc., 1967, 89(26): 7017.
[23]
Hangarge R V, La D D, Boguslavsky M, Jones L A, Kim Y S, Bhosale S V. ChemistrySelect, 2017, 2(35): 11487.
[24]
Tachibana Y, Tanaka M, Nogami M. J. Radioanal. Nucl. Chem., 2019, 322(2): 717.
[25]
Luo X B, Guo B, Luo J M, Deng F, Zhang S Y, Luo S L, Crittenden J. ACS Sust. Chem. Eng., 2015, 3(3): 460.
[26]
Cheng Q, Zhang Y Z, Zheng X D, Sun W, Li B T, Wang D D, Li Z Y. Sep. Purif. Technol., 2021, 262: 118312.
[27]
Bai X, Dai J D, Ma Y, Bian W B, Pan J M. Chem. Eng. J., 2020, 380: 122386.
[28]
Jo H, Le T H, Lee H, Lee J S, Kim M, Lee S, Chang M, Yoon H. Chem. Eng. J., 2023, 452: 139274.
[29]
Ding T, Wu Q, Zheng M P, Nie Z, Li M, Peng S P, Wang Y S, Yu X D, Qian C, Tang S, Wang M L. Front. Energy Res., 2021, 9: 765612.
[30]
Dixit S S, Shashidhar M S, Devaraj S. Tetrahedron, 2006, 62(18): 4360.
[31]
Park S S, Moorthy M S, Song H J, Ha C S. J. Nanosci. Nanotechnol., 2014, 14(11): 8845.
[32]
Zheng X D, Li A, Hua J, Zhang Y Z, Li Z Y. Nanomaterials, 2021, 11(10): 2668.
[33]
Wang W Q, Julaiti P, Ye G, Huo X M, Chen J. Chem. Eng. J., 2018, 336: 669.
[34]
Lu T T, Zhu Y F, Qi Y X, Kang Y R, Wang A Q. Chem. Eng. J., 2019, 368: 988.
[35]
Wang P, Dai J D, Ma Y, Chen L Z, Pan J M. Chem. Eng. J., 2020, 380: 122495.
[36]
Alexandratos S D, Stine C L, Sachleben R A, Moyer B A. Polymer, 2005, 46(17): 6347.
[37]
Xi G Q. Journal of Hainan Normal University(Natural Science), 2001, 68.
(奚干卿. 海南师范学院学报(自然科学版), 2001, 68.).
[38]
Valente M, Sousa S F, Lopes Magalhães A, Freire C. J. Solut. Chem., 2010, 39(8): 1230.
[39]
Martínez-Haya B, Hurtado P, Hortal A R, Steill J D, Oomens J, Merkling P J. J. Phys. Chem. A, 2009, 113(27): 7748.
[40]
Alexander V. Chem. Rev., 1995, 95(2): 273.
[41]
Taziaux D, Soumillion J P, Habib Jiwan J L. J. Photochem. Photobiol. A Chem., 2004, 162(2/3): 599.
[42]
Babujohn N A, Eluri A, Nabeela V P. Chemical Engineering Journal, 2023, 464: 142459.
[43]
Liang S Z C, Ji G X, Sun X L, Li G D, Zhang S T. Chin. J. Inorg. Chem., 2021, 37(11): 2037.
(梁苏卓成, 姬国勋, 孙新利, 李国东, 张仕通. 无机化学学报, 2021, 37(11): 2037.).
[44]
Torrejos R E C, Nisola G M, Park M J, Shon H K, Seo J G, Koo S, Chung W J. Chem. Eng. J., 2015, 264: 89.
[45]
Fogg A M, Freij A J, Parkinson G M. Chem. Mater., 2002, 14(1): 232.
[46]
Qu J, He X M, Wang B T, Zhong L H, Wan L, Li X W, Song S X, Zhang Q W. Appl. Clay Sci., 2016, 120: 24.
[47]
Sissoko I, Iyagba E T, Sahai R, Biloen P. J. Solid State Chem., 1985, 60(3): 283.
[48]
Chen D, Li Y, Zhang J, Zhou J Z, Guo Y, Liu H. Chem. Eng. J., 2012, 185/186: 120.
[49]
Guo M, Liu Z, Li Q, Wu Z J. Qinghai Science and Technology, 2019, 26: 16.
(郭敏, 刘忠, 李权, 吴志坚. 青海科技, 2019, 26: 16.).
[50]
Liu X H, Zhong M L, Chen X Y, Zhao Z W. Hydrometallurgy, 2018, 176: 73.
[51]
Zhong J, Lin S, Yu J G. Desalination, 2021, 505: 114983.
[52]
Dong Q, Li Y J, Pu X L, Zhu S L. Chinese Journal of Rare Metals, 2007, 3: 357.
(董茜, 李燕杰, 朴香兰, 朱慎林. 稀有金属, 2007, 3: 357.).
[53]
Goh K H, Lim T T, Dong Z L. Water Res., 2008, 42(6/7): 1343.
[54]
Isupov V P, Kotsupalo N P, Nemudry A P, Menzeres L T. Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 1999. 621.
[55]
Sun Y, Guo X Y, Hu S F, Xiang X. J. Energy Chem., 2019, 34: 80.
[56]
Chen J, Lin S, Yu J. Journal of Hazardous Materials, 2020, 388: 122101.
[57]
Heidari N, Momeni P. Environmental Earth Sciences, 2017, 76(16): 1.
[58]
Cheng P G, Huang C F, Gan S T, Gong J K, Xiang J, Tang N. Inorg. Chem. Ind., 2021, 53(6): 140.
(程鹏高, 黄传峰, 甘善甜, 龚经款, 项军, 唐娜. 无机盐工业, 2021, 53(6): 140.).
[59]
Paranthaman M P, Li L, Luo J Q, Hoke T, Ucar H, Moyer B A, Harrison S. Environ. Sci. Technol., 2017, 51(22): 13481.
[60]
Shi X C, Zhang Z B, Zhou D F, Zhou X C, Tang T G, Yin S H. J. Central South Univ. Sci. Technol., 2013, 44(3): 892.
(石西昌, 张志兵, 周定方, 周喜诚, 唐天罡, 尹世豪. 中南大学学报(自然科学版), 2013, 44(3): 892.).
[61]
Kosova N V, Uvarov N F, Devyatkina E T, Avvakumov E G. Solid State Ionics, 2000, 135: 107.
[62]
Huang Y D, Jiang R R, Bao S J, Cao Y L, Jia D Z. Nanoscale Res. Lett., 2009, 4(4): 353.
[63]
Takada T, Hayakawa H, Akiba E. J. Solid State Chem., 1995, 115(2): 420.
[64]
Thanh N T K, MacLean N, Mahiddine S. Chem. Rev., 2014, 114(15): 7610.
[65]
Zhang Y C, Wang H, Wang B, Yan H, Ahniyaz A, Yoshimura M. Mater. Res. Bull., 2002, 37(8): 1411.
[66]
Zhang Q H, Li S P, Sun S Y, Yin X S, Yu J G. Adv. Powder Technol., 2009, 20(5): 432.
[67]
Helan M, Berchmans L J. Mater. Manuf. Process., 2011, 26(11): 1369.
[68]
Yu Q Q, Morioka E, Sasaki K. Microporous Mesoporous Mater., 2013, 179: 122.
[69]
Zhang L Y, Zhou D L, Yao Q Q, Zhou J B. Appl. Surf. Sci., 2016, 368: 82.
[70]
Li X W, Chen L L, Chao Y H, Zhu L H, Luo G L, Sun J, Jiang L, Zhu W S, Liu Z C, Xu C M. Desalination, 2022, 537: 115847.
[71]
Shi X C, Zhang Z B, Zhou D F, Zhang L F, Chen B Z, Yu L L. Trans. Nonferrous Met. Soc. China, 2013, 23(1): 253.
[72]
Xu X, Chen Y M, Wan P Y, Gasem K, Wang K Y, He T, Adidharma H, Fan M H. Prog. Mater. Sci., 2016, 84: 276.
[73]
Hunter J C. J. Solid State Chem., 1981, 39(2): 142.
[74]
Ooi K, Miyai Y, Katoh S, Maeda H, Abe M. Chem. Lett., 1988, 17(6): 989.
[75]
Shen X M, Clearfield A. J. Solid State Chem., 1986, 64(3): 270.
[76]
Sato K, Poojary D M, Clearfield A, Kohno M, Inoue Y. J. Solid State Chem., 1997, 131(1): 84.
[77]
Koyanaka H, Matsubaya O, Koyanaka Y, Hatta N. J. Electroanal. Chem., 2003, 559: 77.
[78]
Ammundsen B, Jones D J, Rozière J, Berg H, Tellgren R, Thomas J O. Chem. Mater., 1998, 10(6): 1680.
[79]
Kim Y S, Kanoh H, Hirotsu T, Ooi K. Mater. Res. Bull., 2002, 37(2): 391.
[80]
Wei S D, Wei Y F, Chen T, Liu C B, Tang Y H. Chem. Eng. J., 2020, 379: 122407.
[81]
Moazeni M, Hajipour H, Askari M, Nusheh M. Mater. Res. Bull., 2015, 61: 70.
[82]
Chitrakar R, Makita Y, Ooi K, Sonoda A. Dalton Trans., 2014, 43(23): 8933.
[83]
Hosogi Y, Kato H, Kudo A. Journal of Materials Chemistry, 2008, 18: 647.
[84]
Ooi K, Miyai Y, Sakakihara J. Langmuir, 1991, 7(6): 1167.
[85]
Feng Q, Miyai Y, Kanoh H, Ooi K. Langmuir, 1992, 8(7): 1861.
[86]
Zandevakili S, Ranjbar M, Ehteshamzadeh M. Micro Nano Lett., 2015, 10(2): 58.
[87]
Gu D L, Sun W J, Han G F, Cui Q, Wang H Y. Chem. Eng. J., 2018, 350: 474.
[88]
Tomita Y, Yonekura H, Kobayashi K. Bull. Chem. Soc. Jpn., 2002, 75(10): 2253.
[89]
Tian L Y, Ma W, Han M. Chem. Eng. J., 2010, 156(1): 134.
[90]
Li N, Gan K F, Lu D L, Zhang J L, Wang L Z. Res. Chem. Intermed., 2018, 44(2): 1105.
[91]
Han H J, Wu Y M, Cao Y S, Han T T, Tang W P. Inorg. Chem. Ind., 2022, 54(8): 59.
(韩红静, 吴勇民, 曹永生, 韩婷婷, 汤卫平. 无机盐工业, 2022, 54(8): 59.).
[92]
Li X W, Chao Y H, Chen L L, Chen W, Luo J, Wang C, Wu P W, Li H M, Zhu W S. Chem. Eng. J., 2020, 392: 123731.
[93]
LI C, Xiao J L, Sun S Y. CIESC Journal, 2014, 65: 220.
[94]
Umeno A, Miyai Y, Takagi N, Chitrakar R, Sakane K, Ooi K. Ind. Eng. Chem. Res., 2002, 41(17): 4281.
[95]
Hong H J, Park I S, Ryu T, Ryu J, Kim B G, Chung K S. Chem. Eng. J., 2013, 234: 16.
[96]
Zhou S Y, Guo X J, Yan X, Chen Y, Lang W Z. Particuology, 2022, 69: 100.
[97]
Xie L X, Chen X M. CIESC Journal, 2014, 65: 237.
[98]
Ma L W, Chen B Z, Chen Y, Shi X C. Microporous Mesoporous Mater., 2011, 142(1): 147.
[99]
Pan L L, Zhu J H, Li Y Y. Multipurp. Util. Miner. Resour., 2002, 2: 28.
(潘立玲, 朱建华, 李渝渝. 矿产综合利用, 2002, 2: 28.).
[100]
Liang Q, Zhang E H, Yan G, Yang Y Z, Liu W F, Liu X G. New Carbon Mater., 2020, 35(6): 696.
[101]
Jeong J M, Rhee K Y, Park S J. J. Ind. Eng. Chem., 2015, 27: 329.
[102]
Huang Y, Wang R. Chem. Eng. J., 2019, 378: 122084.
[103]
Xu J J, Cai X Y, Cai S M, Shao Y X, Hu C, Lu S R, Ding S J. Energy Environ. Mater., 2022, e12450.
[104]
Chen S M, Song Z B, Wang L, Chen H, Zhang S Q, Pan F, Yang L Y. Acc. Chem. Res., 2022, 55(15): 2088.
[105]
Fu Y, Yang K, Xue S, Li W, Chen S, Song Y, Sun. Advanced Functional Materials, 2023, 33(10): 2210845.

Funding

Science and Technology Major Projects of Xinjiang Autonomous Region(2022A03009)
National Natural Science Foundation of China(21975228)
PDF(7884 KB)

Accesses

Citation

Detail

Sections
Recommended

/