Research Methods for Liquid-Liquid Phase Separation of Biological Macromolecules

Chubin Zhao, Hailin Wang

Prog Chem ›› 2023, Vol. 35 ›› Issue (10) : 1486-1491.

PDF(1033 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1033 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (10) : 1486-1491. DOI: 10.7536/PC230222
Review

Research Methods for Liquid-Liquid Phase Separation of Biological Macromolecules

Author information +
History +

Abstract

The liquid-liquid phase separation of biological macromolecules is widely observed in various biological systems, and has become an emerging research focus of life science in recent years. Biological macromolecules are continuously enriched through multivalent interaction. When the molecular concentration reaches the dissolution threshold in solution, they will be precipitated from solution in the form of liquid-liquid phase separation. It is closely related to many important biological processes in cells (such as the formation of membraneless organelles). With the deepening of research on phase separation, its research methods are also developing and improving. Based on the principle and characteristics of phase separation, this paper introduces some commonly used research methods of phase separation. It provides the method basis for the subsequent phase separation research and promotes the further development of phase separation techniques and methods.

Contents

1 Principle and characteristics of liquid-liquid separation

2 Imaging technique for liquid-liquid phase separation

2.1 Optical microimaging

2.2 Single-molecule fluorescence imaging

2.3 Fluorescence correlation spectroscopy

3 Theoretical prediction for liquid-liquid separation

3.1 Phase separation prediction and modeling

3.2 Databases of phase separation related proteins

4 Conclusion and outlook

Key words

liquid-liquid phase separation / optical microscopy / fluorescence correlation spectroscopy / molecular simulation

Cite this article

Download Citations
Chubin Zhao , Hailin Wang. Research Methods for Liquid-Liquid Phase Separation of Biological Macromolecules[J]. Progress in Chemistry. 2023, 35(10): 1486-1491 https://doi.org/10.7536/PC230222

References

[1]
Banani S F, Lee H O, Hyman A A, Rosen M K. Nat. Rev. Mol. Cell Biol., 2017, 18(5): 285.
[2]
Gao Y F, Li P L. Chinese Journal of Cell Biology, 2019, 41(2): 185.
(郜一飞, 李丕龙. 中国细胞生物学学报, 2019, 41(2): 185.).
[3]
Li P L, Banjade S, Cheng H C, Kim S, Chen B Y, Guo L, Llaguno M, Hollingsworth J V, King D S, Banani S F, Russo P S, Jiang Q X, Nixon B T, Rosen M K. Nature, 2012, 483(7389): 336.
[4]
Strom A R, Emelyanov A V, Mir M, Fyodorov D V, Darzacq X, Karpen G H. Nature, 2017, 547(7662): 241.
[5]
Wu M, Xu G, Han C, Luan P F, Xing Y H, Nan F, Yang L Z, Huang Y K, Yang Z H, Shan L, Yang L, Liu J Q, Chen L L. Science, 2021, 373(6554): 547.
[6]
Larson A G, Elnatan D, Keenen M M, Trnka M J, Johnston J B, Burlingame A L, Agard D A, Redding S, Narlikar G J. Nature, 2017, 547(7662): 236.
[7]
Guo Y E, Manteiga J C, Henninger J E, Sabari B R, Dall’Agnese A, Hannett N M, Spille J H, Afeyan L K, Zamudio A V, Shrinivas K, Abraham B J, Boija A, Decker T M, Rimel J K, Fant C B, Lee T I, Cisse I I, Sharp P A, Taatjes D J, Young R A. Nature, 2019, 572(7770): 543.
[8]
Su X L, Ditlev J A, Hui E F, Xing W M, Banjade S, Okrut J, King D S, Taunton J, Rosen M K, Vale R D. Science, 2016, 352(6285): 595.
[9]
Du M J, Chen Z J. Science, 2018, 361(6403): 704.
[10]
Banjade S, Rosen M K. eLife, 2014, 3: e04123.
[11]
Wang J, Choi J M, Holehouse A S, Lee H O, Zhang X J, Jahnel M, Maharana S, Lemaitre R, Pozniakovsky A, Drechsel D, Poser I, Pappu R V, Alberti S, Hyman A A. Cell, 2018, 174(3): 688.
[12]
Alberti S, Gladfelter A, Mittag T. Cell, 2019, 176(3): 419.
[13]
Iserman C, Desroches Altamirano C, Jegers C, Friedrich U, Zarin T, Fritsch A W, Mittasch M, Domingues A, Hersemann L, Jahnel M, Richter D, Guenther U P, Hentze M W, Moses A M, Hyman A A, Kramer G, Kreysing M, Franzmann T M, Alberti S. Cell, 2020, 181(4): 818.
[14]
Jain A, Vale R D. Nature, 2017, 546(7657): 243.
[15]
Peng A, Weber S C. Non Coding RNA, 2019, 5(4): 50.
[16]
Cohen T J, Guo J L, Hurtado D E, Kwong L K, Mills I P, Trojanowski J Q, Lee V M Y. Nat. Commun., 2011, 2: 252.
[17]
Alberti S, Dormann D. Annu. Rev. Genet., 2019, 53: 171.
[18]
Ávila J, Lim F, Moreno F, Belmonte C, Cuello A C. Mol. Neurobiol., 2002, 25(3): 213.
[19]
Dong X W, Bera S, Qiao Q, Tang Y M, Lao Z H, Luo Y, Gazit E, Wei G H. J. Phys. Chem. Lett., 2021, 12(10): 2576.
[20]
Alberti S, Saha S, Woodruff J B, Franzmann T M, Wang J, Hyman A A. J. Mol. Biol., 2018, 430(23): 4806.
[21]
Babinchak W M, Surewicz W K. J. Mol. Biol., 2020, 432(7): 1910.
[22]
Zhang X X. Optical Instruments, 2015, 37(6): 550.
(张祥翔. 光学仪器, 2015, 37(6): 550.).
[23]
Guan Y J, Ma X C. J. Sun Yat Sen Univ. Med. Sci., 2022, 43(3): 504.
(关苑君, 马显才. 中山大学学报(医学科学版), 2022, 43(3): 504.).
[24]
Kanaan N M, Hamel C, Grabinski T, Combs B. Nat. Commun., 2020, 11: 2809.
[25]
Fu Y, Zhuang X W. Nat. Chem. Biol., 2020, 16(9): 955.
[26]
Babinchak W M, Surewicz W K. Bio-Protoc., 2020, 10(2): e3489.
[27]
Shin Y, Brangwynne C P. Science, 2017, 357(6357): eaaf4382.
[28]
GuillÉn-Boixet J, Kopach A, Holehouse A S, Wittmann S, Jahnel M, Schlüßler R, Kim K, Trussina I R E A, Wang J, Mateju D, Poser I, Maharana S, Ruer-Gruß M, Richter D, Zhang X J, Chang Y T, Guck J, Honigmann A, Mahamid J, Hyman A A, Pappu R V, Alberti S, Franzmann T M. Cell, 2020, 181(2): 346.
[29]
Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R, Weiss S. Proc. Natl. Acad. Sci. U. S. A., 1996, 93(13): 6264.
[30]
Förster T. Ann. Phys., 1948, 437(1/2): 55.
[31]
Mitrea D M, Cika J A, Guy C S, Ban D, Banerjee P R, Stanley C B, Nourse A, Deniz A A, Kriwacki R W. eLife, 2016, 5: e13571.
[32]
Wen J T, Hong L, Krainer G, Yao Q Q, Knowles T P J, Wu S, Perrett S. J. Am. Chem. Soc., 2021, 143(33): 13056.
[33]
Mitrea D M, Cika J A, Stanley C B, Nourse A, Onuchic P L, Banerjee P R, Phillips A H, Park C G, Deniz A A, Kriwacki R W. Nat. Commun., 2018, 9: 842.
[34]
Magde D, Elson E L, Webb W W. Biopolymers, 1974, 13(1): 29.
[35]
Ghosh A, Enderlein J. Curr. Opin. Struct. Biol., 2021, 70: 123.
[36]
Chiantia S, Ries J, Schwille P. Biochim. Biophys. Acta BBA Biomembr., 2009, 1788(1): 225.
[37]
He H T, Marguet D. Annu. Rev. Phys. Chem., 2011, 62: 417.
[38]
Wang Z L, Zhang H Z, Jian L, Ding B, Huang K Y, Zhang W L, Xiao Q, Huang S H. Biophys. Rep., 2022, 8(2): 100.
[39]
Bracha D, Walls M T, Wei M T, Zhu L, Kurian M, Avalos J L, Toettcher J E, Brangwynne C P. Cell, 2018, 175(6): 1467.
[40]
Shakya A, King J T. Biophys. J., 2018, 115(10): 1840.
[41]
Loman A, Dertinger T, Koberling F, Enderlein J. Chem. Phys. Lett., 2008, 459(1/6): 18.
[42]
Peng S J, Li W P, Yao Y R, Xing W J, Li P L, Chen C L. Proc. Natl. Acad. Sci. U. S. A., 2020, 117(44): 27124.
[43]
Best R B. Curr. Opin. Struct. Biol., 2017, 42: 147.
[44]
Whitford P C, Noel J K, Gosavi S, Schug A, Sanbonmatsu K Y, Onuchic J N. Proteins Struct. Funct. Bioinform., 2009, 75(2): 430.
[45]
Zhang P C, Fang W Y, Bao L, Kang W B. Acta Phys. Sin., 2020, 69(13): 278.
(张鹏程, 方文玉, 鲍磊, 康文斌. 物理学报, 2020, 69(13): 278.).
[46]
Ruff K M, Harmon T S, Pappu R V. J. Chem. Phys., 2015, 143(24): 243123.
[47]
Feric M, Vaidya N, Harmon T S, Mitrea D M, Zhu L, Richardson T M, Kriwacki R W, Pappu R V, Brangwynne C P. Cell, 2016, 165(7): 1686.
[48]
You K Q, Huang Q, Yu C Y, Shen B Y, Sevilla C, Shi M L, Hermjakob H, Chen Y, Li T T. Nucleic Acids Res., 2020, 48(D1): D354.
[49]
Hou C, Wang X X, Xie H T, Chen T Y, Zhu P Y, Xu X F, You K Q, Li T T. Nucleic Acids Res., 2023, 51(D1): D460.
[50]
Meszaros B, Erdos G, Szabo B, Schad E, Tantos A, Abukhairan R, Horvath T, Murvai N, Kovacs O P, Kovacs M, Tosatto S C E, Tompa P, Dosztanyi Z, Pancsa R. Nucleic Acids Res., 2020, 48(D1): D360.
[51]
Wang X, Zhou X, Yan Q L, Liao S F, Tang W Q, Xu P Y, Gao Y, Li Q, Dou Z H, Yang W S, Huang B F, Li J H, Zhang Z Q. Bioinformatics, 2022, 38(7): 2010.
[52]
Li Q, Peng X J, Li Y Q, Tang W Q, Zhu J A, Huang J, Qi Y F, Zhang Z Q. Nucleic Acids Res., 2020, 48(D1): D320.
[53]
Ning W S, Guo Y P, Lin S F, Mei B, Wu Y, Jiang P R, Tan X D, Zhang W Z, Chen G W, Peng D, Chu L, Xue Y. Nucleic Acids Res., 2020, 48(D1): D288.
[54]
Sun Y P, Zhang S Q, Hu J J, Tao Y Q, Xia W C, Gu J G, Li Y C, Cao Q, Li D, Liu C. iScience, 2022, 25(1): 103701.
[55]
Li X F, van der Gucht J, Erni P, de Vries R. J. Colloid Interface Sci., 2023, 632: 357.
[56]
Girelli A, Rahmann H, Begam N, Ragulskaya A, Reiser M, Chandran S, Westermeier F, Sprung M, Zhang F J, Gutt C, Schreiber F. Phys. Rev. Lett., 2021, 126(13): 138004.
[57]
Zhang X J, Sridharan S, Zagoriy I, Eugster Oegema C, Ching C, Pflaesterer T, Fung H K H, Becher I, Poser I, Müller C W, Hyman A A, Savitski M M, Mahamid J. Cell, 2023, 186(9): 1877.
[58]
Yu M, Heidari M, Mikhaleva S, Tan P S, Mingu S, Ruan H, Reinkemeier C D, Obarska-Kosinska A, Siggel M, Beck M, Hummer G, Lemke E A. Nature, 2023, 617(7959): 162.

Funding

National Natural Science Foundation of China(21927807)
National Natural Science Foundation of China(22021003)
PDF(1033 KB)

Accesses

Citation

Detail

Sections
Recommended

/