
Preparation of Double Network Hydrogels and their Mechanical Modification
Li Liqing, Zhong Xiumin, Zhang Lixu, Liu Kunming, Wang Quanbing, Ma Jie
Prog Chem ›› 2023, Vol. 35 ›› Issue (11) : 1674-1685.
Preparation of Double Network Hydrogels and their Mechanical Modification
Double Network Hydrogels are polymer materials composed of two interpenetrating or semi-penetrating three-dimensional networks, and their unique contrast interpenetrating network structure and adjustable network crosslinking method overcome the obstacles in mechanical properties of single-network hydrogels, and are widely used in tissue engineering, intelligent sensors, ion adsorption and other fields with their good mechanical, anti-swelling, self-healing and other mechanical properties. However, the existing technologies suffer from numerous synthesis steps, complicated preparation conditions and the use of toxic and harmful chemical cross-linking, which limit the mass production of double network hydrogels for applications. Therefore, in recent years, the modification of double network hydrogels has received more and more attention, and researchers have carried out a series of structural modification studies mainly around how to improve the mechanical properties of double network hydrogels, aiming to broaden their application in various fields. In this paper, the types of double network hydrogels are reviewed, and the preparation methods, structures and unique properties of different hydrogels are introduced in detail. The research on modification to improve mechanical properties, anti-swelling performance and self-healing properties is analyzed, aiming to break through the current limitations of double network hydrogels and provide ideas and directions for their future development.
1 Introduction
2 Types and preparation methods of double network hydrogels
2.1 Study on the preparation of organic-organic double network hydrogels
2.2 Study on the preparation of organic-inorganic double network hydrogels
3 Research on improving the performance of double network hydrogels
3.1 Improving mechanical properties
3.2 Improving anti-swelling properties
3.3 Improving self-healing properties
4 Conclusion and outlook
double network hydrogel / preparation / mechanical properties / modification
[1] |
( 许世超, 唐楠, 白学健, 刘宇凡, 杨伟静. 现代化工, 2021, 41(6):37.)
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
( 杨艳宇, 王星, 吴德成. 化学学报, 2021, 79(1):1.)
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
( 李立清, 吴盼旺, 马杰. 化学进展, 2021, 33(6):1010.)
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
( 伍绍吉, 袁尘瑜, 汤建新, 汤力. 湘潭大学学报(自然科学学报), 2022, 44(1): 31.)
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
( 糜志远, 陈晓雨, 姚晓琳, 徐凯, 刘华兵, 李娜, 刘宁. 现代食品科技, 2022, 38(1): 398.)
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
/
〈 |
|
〉 |