Preparation of Double Network Hydrogels and their Mechanical Modification

Li Liqing, Zhong Xiumin, Zhang Lixu, Liu Kunming, Wang Quanbing, Ma Jie

Prog Chem ›› 2023, Vol. 35 ›› Issue (11) : 1674-1685.

PDF(4291 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4291 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (11) : 1674-1685. DOI: 10.7536/PC230401
Review

Preparation of Double Network Hydrogels and their Mechanical Modification

Author information +
History +

Abstract

Double Network Hydrogels are polymer materials composed of two interpenetrating or semi-penetrating three-dimensional networks, and their unique contrast interpenetrating network structure and adjustable network crosslinking method overcome the obstacles in mechanical properties of single-network hydrogels, and are widely used in tissue engineering, intelligent sensors, ion adsorption and other fields with their good mechanical, anti-swelling, self-healing and other mechanical properties. However, the existing technologies suffer from numerous synthesis steps, complicated preparation conditions and the use of toxic and harmful chemical cross-linking, which limit the mass production of double network hydrogels for applications. Therefore, in recent years, the modification of double network hydrogels has received more and more attention, and researchers have carried out a series of structural modification studies mainly around how to improve the mechanical properties of double network hydrogels, aiming to broaden their application in various fields. In this paper, the types of double network hydrogels are reviewed, and the preparation methods, structures and unique properties of different hydrogels are introduced in detail. The research on modification to improve mechanical properties, anti-swelling performance and self-healing properties is analyzed, aiming to break through the current limitations of double network hydrogels and provide ideas and directions for their future development.

Contents

1 Introduction

2 Types and preparation methods of double network hydrogels

2.1 Study on the preparation of organic-organic double network hydrogels

2.2 Study on the preparation of organic-inorganic double network hydrogels

3 Research on improving the performance of double network hydrogels

3.1 Improving mechanical properties

3.2 Improving anti-swelling properties

3.3 Improving self-healing properties

4 Conclusion and outlook

Key words

double network hydrogel / preparation / mechanical properties / modification

Cite this article

Download Citations
Li Liqing , Zhong Xiumin , Zhang Lixu , et al . Preparation of Double Network Hydrogels and their Mechanical Modification[J]. Progress in Chemistry. 2023, 35(11): 1674-1685 https://doi.org/10.7536/PC230401

References

[1]
Xu S C, Tang N, Bai X J, Liu Y F, Yang W J. Modern Chemical Industry, 2021, 41(6): 37.
( 许世超, 唐楠, 白学健, 刘宇凡, 杨伟静. 现代化工, 2021, 41(6):37.)
[2]
Chen X Y, Ji N, Li F, Qin Y, Wang Y F, Xiong L, Sun Q J. Foods, 2022, 11(9): 1315.
[3]
Li Z L, Lin Z Q. Aggregate, 2021, 2(2): e21.
[4]
Huang X X, Li J C, Luo J, Gao Q, Mao A, Li J Z. Mater. Today Commun., 2021, 29: 102757.
[5]
Li T, Zhang X H, Xia B H, Ma P M, Chen M Q, Du M L, Wang Y, Dong W F. New J. Chem., 2020, 44(38): 16569.
[6]
Liang J, Shan G R, Pan P J. Soft Matter, 2017, 13(22): 4148.
[7]
Li K Y, Liu Y, Ge Y Q, Cao H Y, Zhuang S J, Yang X T, Zhao Y Y, Gu X L. J. Mater. Chem. C, 2023, 11(5): 1908.
[8]
Chen Q, Chen H, Zhu L, Zheng J. Macromol. Chem. Phys., 2016, 217(9): 1017.
[9]
Tarashi S, Nazockdast H, Sodeifian G. Polymer, 2019, 183: 121837.
[10]
Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Adv. Mater., 2003, 15(14): 1155.
[11]
Chen Q, Chen H, Zhu L, Zheng J. J. Mater. Chem. B, 2015, 3(18): 3654.
[12]
Yang Y Y, Wang X, Wu D C. Acta Chimica Sinica, 2021, 79(1): 1.
( 杨艳宇, 王星, 吴德成. 化学学报, 2021, 79(1):1.)
[13]
Li L Q, Wu P W, Yu F, Ma J. J. Mater. Chem. A, 2022, 10(17): 9215.
[14]
Yu F, Yang P Y, Yang Z Q, Zhang X C, Ma J. Chem. Eng. J., 2021, 426: 131900.
[15]
Yang J, Li Y, Zhu L, Qin G, Chen Q. J. Polym. Sci. B Polym. Phys., 2018, 56(19): 1351.
[16]
Tang J X, Huang J M, Zhou G Y, Liu S H. J. Chem. Thermodyn., 2020, 141: 105918.
[17]
Zhou L J, Pei X J, Fang K, Zhang R, Fu J. Polymer, 2020, 192: 122319.
[18]
Yue Y Y, Wang X H, Han J Q, Yu L, Chen J Q, Wu Q L, Jiang J C. Carbohydr. Polym., 2019, 206: 289.
[19]
Gong Z Y, Zhang G P, Zeng X L, Li J H, Li G, Huang W P, Sun R, Wong C. ACS Appl. Mater. Interfaces, 2016, 8(36): 24030.
[20]
Chu L, Liu C B, Zhou G Y, Xu R, Tang Y H, Zeng Z B, Luo S L. J. Hazard. Mater., 2015, 300: 153.
[21]
Li L Q, Wu P W, Ma J. Progress in Chemistry, 2021, 33(6): 1010.
( 李立清, 吴盼旺, 马杰. 化学进展, 2021, 33(6):1010.)
[22]
Li L, Ni R, Shao Y, Mao S R. Carbohydr. Polym., 2014, 103: 1.
[23]
Liu S J, Li L. ACS Appl. Mater. Interfaces, 2016, 8(43): 29749.
[24]
Yu F, Cui T R, Yang C F, Dai X H, Ma J. Chemosphere, 2019, 237: 124417.
[25]
Guo Y, He M M, Peng Y, Zhang Q, Yan L K, Zan X J. J. Mater. Sci., 2020, 55(21): 9109.
[26]
Milovanovic M, Isselbaecher N, Brandt V, Tiller J C. Chem. Mater., 2021, 33(21): 8312.
[27]
Ma J, Xiong Y C, Dai X H, Yu F. Chem. Eng. J., 2020, 380: 122387.
[28]
Zhuang Y, Yu F, Chen H, Zheng J, Ma J, Chen J H. J. Mater. Chem. A, 2016, 4(28): 10885.
[29]
Mohammadi S, Keshvari H, Eskandari M, Faghihi S. React. Funct. Polym., 2016, 106: 120.
[30]
Huang P, Chen W F, Yan L F. Nanoscale, 2013, 5(13): 6034.
[31]
Yang X Z, Zhou T Z, Ren B Z, Hursthouse A, Zhang Y Z. Sci. Rep., 2018, 8: 10717.
[32]
Chu Y Y, Song X F, Zhao H X. J. Appl. Polym. Sci., 2019, 136(35): 47905.
[33]
Kamio E, Yasui T, Iida Y, Gong J P, Matsuyama H. Adv. Mater., 2017, 29(47): 1704118.
[34]
Ran J B, Jiang P, Liu S N, Sun G L, Yan P, Shen X Y, Tong H. Mater. Sci. Eng. C, 2017, 78: 130.
[35]
Fan J C, Shi Z X, Lian M, Li H, Yin J. J. Mater. Chem. A, 2013, 1(25): 7433.
[36]
Yang D Y. Chem. Mater., 2022, 34(5): 1987.
[37]
Ning X J, Huang J N, Yimuhan A, Yuan N N, Chen C, Lin D H. Int. J. Mol. Sci., 2022, 23(24): 15757.
[38]
Yu H C, Li C Y, Du M, Song Y H, Wu Z L, Zheng Q. Macromol., 2019, 2: 629.
[39]
Yang C, Liu Z, Chen C, Shi K, Zhang L, Ju X J, Wang W, Xie R, Chu L Y. ACS Appl. Mater. Interfaces, 2017, 9(18): 15758.
[40]
Nakajima T, Sato H, Zhao Y, Kawahara S, Kurokawa T, Sugahara K, Gong J P. Adv. Funct. Mater., 2012, 22(21): 4426.
[41]
Chen Q, Zhu L, Zhao C, Wang Q M, Zheng J. Adv. Mater., 2013, 25(30): 4171.
[42]
Ye L N, Lv Q, Sun X Y, Liang Y Z, Fang P W, Yuan X Y, Li M, Zhang X Z, Shang X F, Liang H Y. Soft Matter, 2020, 16(7): 1840.
[43]
Xu P, Shang Z J, Yao M L, Ke Z Y, Li X X, Liu P D. J. Mol. Liq., 2022, 368: 120611.
[44]
Liu C Y, Liu H Y, Xiong T H, Xu A R, Pan B L, Tang K Y. Polymers, 2018, 10(8): 835.
[45]
Wu S J, Yuan C Y, Tang J X, Tang L. J. Xiangtan Univ. Nat. Sci. Ed., 2022, 44(1): 31.
( 伍绍吉, 袁尘瑜, 汤建新, 汤力. 湘潭大学学报(自然科学学报), 2022, 44(1): 31.)
[46]
Louf J F, Lu N B, O’Connell M G, Cho H J, Datta S S. Sci. Adv., 2021, 7(7): eabd2711.
[47]
Kamata H, Akagi Y, Kayasuga-Kariya Y, Chung U I, Sakai T. Science, 2014, 343(6173): 873.
[48]
Li H F, Wang H B, Zhang D F, Xu Z Y, Liu W G. Polymer, 2018, 153: 193.
[49]
Cong H P, Wang P, Yu S H. Chem. Mater., 2013, 25(16): 3357.
[50]
Zhang H J, Zhai D D, He Y. RSC Adv., 2014, 4(84): 44600.
[51]
Fan X L, Liu H, Wang J R, Tang K Y. J. Appl. Polym. Sci., 2020, 137(24): 48805.
[52]
Bi S C, Pang J H, Huang L, Sun M J, Cheng X J, Chen X G. Int. J. Biol. Macromol., 2020, 146: 99.
[53]
Liu Y, Xia M, Wu L L, Pan S X, Zhang Y H, He B Q, He P X. Ind. Eng. Chem. Res., 2019, 58(47): 21649.
[54]
Shi C, Yang F M, Hu L, Wang H B, Wang Y X, Wang Z C, Pan S H, Chen J D. Mater. Lett., 2022, 316: 132048.
[55]
Wang J L, Su S H, Qiu J J. New J. Chem., 2017, 41(10): 3781.
[56]
Kim J R, Woo S H, Son Y L, Kim J R, Kasi R M, Kim S C. Macromolecules, 2021, 54(5): 2439.
[57]
Wu F, Pang Y, Liu J Y. Nat. Commun., 2020, 11: 4502.
[58]
Wang Z, Zheng X J, Ouchi T, Kouznetsova T B, Beech H K, Av-Ron S, Matsuda T, Bowser B H, Wang S, Johnson J A, Kalow J A, Olsen B D, Gong J P, Rubinstein M, Craig S L. Science, 2021, 374(6564): 193.
[59]
Mi Z Y, Chen X Y, Yao X L, Xu K, Liu H B, Li N, Liu N. Mod. Food Sci. Technol., 2022, 38(1): 398.
( 糜志远, 陈晓雨, 姚晓琳, 徐凯, 刘华兵, 李娜, 刘宁. 现代食品科技, 2022, 38(1): 398.)
[60]
Zhang H T, Wu X J, Qin Z H, Sun X, Zhang H, Yu Q Y, Yao M M, He S S, Dong X R, Yao F L, Li J J. Cellulose, 2020, 27(17): 9975.
[61]
Zhao L Y, Zheng Q F, Liu Y X, Wang S, Wang J, Liu X F. Eur. Polym. J., 2020, 124: 109474.
[62]
Sun J Y, Zhao X H, Illeperuma W R K, Chaudhuri O, Oh K H, Mooney D J, Vlassak J J, Suo Z G. Nature, 2012, 489(7414): 133.
[63]
Zheng Q F, Zhao L Y, Wang J, Wang S, Liu Y X, Liu X F. Colloids Surf. A Physicochem. Eng. Aspects, 2020, 589: 124402.
[64]
Wei D D, Yang J, Zhu L, Chen F, Tang Z Q, Qin G, Chen Q. Polym. Test., 2018, 69: 167.
[65]
Shang X Q, Wang Q L, Li J H, Zhang G J, Zhang J G, Liu P, Wang L M. Carbohydr. Polym., 2021, 257: 117626.

Funding

Key Project of Natural Science Foundation of Jiangxi Province, Research on Targeted Molecular Design Law and Structure-Activity Relationship of Ionic Rare Earth Extractants(20224ACB203010)
project of High Level and High Skilled Leading Talent Training of Jiangxi Province(2022)
Jiangxi Provincial Natural Science Foundation(20212BAB203013)
Science and Technology Project Founded by the Education Department of Jiangxi Province(GJJ22008207)
PDF(4291 KB)

Accesses

Citation

Detail

Sections
Recommended

/