Endothermic Reaction of High Heat Sink Hydrocarbon Jet Fuel

Zhenquan Fang, Shugen Jiang, Xinghua Zhang, Qi Zhang, Lungang Chen, Jianguo Liu, Longlong Ma

Prog Chem ›› 2023, Vol. 35 ›› Issue (12) : 1895-1910.

PDF(6233 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6233 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (12) : 1895-1910. DOI: 10.7536/PC230417
Review

Endothermic Reaction of High Heat Sink Hydrocarbon Jet Fuel

Author information +
History +

Abstract

Hypersonic vehicle is not only the significant development direction in the field of air and space, but also the important symbol of the overall scientific and technological strength of a country. In order to combine cooling and propulsion functions, endothermic hydrocarbon fuel need to possess the basic characteristics of high heat sink, high density, high calorific value, high thermal stability, low freezing point, low coking and low cost. In this paper, the research progress of endothermic reactions of endothermic hydrocarbon fuels was summarized. This paper focusing on the effects of thermal cracking, catalytic cracking and catalytic steam reforming on heat sink. Firstly, the effects of pyrolysis conditions such as temperature, pressure and residence time on heat sink were analyzed. And then, the correlation between fuel composition, molecular structure and thermal cracking, and the effects of molecular sieves, nanoparticles and initiators on the catalytic cracking behavior and heat sink of endothermic hydrocarbon fuels were summarized. Furthermore, the influence of molecular sieve, nanoparticles and initiator on the catalytic cracking behavior and heat sink of endothermic hydrocarbon fuels, and the coking and inhibition technology in the process of endothermic reaction is summarized. Finally, the future research directions of endothermic hydrocarbon fuels are proposed in the light of the current development.

Contents

1 Introduction

2 Effect of thermal cracking on heat sink

2.1 Pyrolysis conditions

2.2 Fuel composition

3 Effect of catalytic cracking on heat sink

3.1 Molecular sieve

3.2 Nanoparticles

3.3 Initiator

4 Effect of catalytic steam reforming on heat sink

5 Comprehensive comparison of heat absorption technology

6 Coking and inhibition technology

7 Conclusion and outlook

Key words

endothermic hydrocarbon fuel / thermal cracking / catalytic cracking / catalytic steam reforming / heat sink

Cite this article

Download Citations
Zhenquan Fang , Shugen Jiang , Xinghua Zhang , et al . Endothermic Reaction of High Heat Sink Hydrocarbon Jet Fuel[J]. Progress in Chemistry. 2023, 35(12): 1895-1910 https://doi.org/10.7536/PC230417

References

[1]
Yang Y Z, Yang J L, FangD N. Appl. Math. Mech., 2008, 29(1): 51.
[2]
Liu Z H, Bi Q C, Feng J T. Fuel, 2015, 158: 388.
[3]
Wang J X, Li Y Z, Liu XD, Shen C Q, Zhang H S, Xiong K. Chin. J. Aeronaut., 2021, 34(2): 1.
[4]
Sreekireddy P, Reddy T K K, Selvaraj P, Reddy V M, Lee B J. Appl. Therm. Eng., 2019, 147: 231.
[5]
Dinda S, Vuchuru K, Konda S, Uttaravalli A N. ACS Omega, 2021, 6(40): 26741.
[6]
Zhang R, Jiang J, Yang Y, Le J, Zhang X. International Space Planes & Hypersonic Systems & Technologies Conference, 2012.
[7]
SobelD R, Spadaccini L J. J. Eng. Gas Turbines Power, 1997, 119(2): 344.
[8]
Hubesch R, Mazur M, Selvakannan P R, Föger K, Lee A F, Wilson K, Bhargava S. Sustain. Energy Fuels, 2022, 6(7): 1664.
[9]
Fortin T J, Bruno T J. Energy Fuels, 2013, 27(5): 2506.
[10]
He F, Mi Z T, Sun H Y. Prog. Chem., 2006, 18(7/8): 1041.
(贺芳, 米镇涛, 孙海云. 化学进展, 2006, 18(7/8): 1041.).
[11]
PetleyD H, Jones S C. J. Aircr., 1992, 29(3): 384.
[12]
Rahimi N, Karimzadeh R. Appl. Catal. A Gen., 2011, 398(1/2): 1.
[13]
Wu X, YeD F, Jin SD, He G J, Guo Y S, Fang W J. Fuel, 2019, 255: 115782.
[14]
Hui S P, Zhong B J. J. Energy Res. Technol., 2021, 144(3): 032309.
[15]
Hou L Y, Dong N, SunD P. Fuel, 2013, 103: 1132.
[16]
Zhong F Q, Fan X J, Yu G, Li J G, Sung C J. J. Thermophys. Heat Transf., 2011, 25(3): 450.
[17]
Edwards T. Pet. Chem., 1996, 41: 481.
[18]
Li Y, Jin B T, Zhang X W, Liu G Z. J. Anal. Appl. Pyrol., 2021, 155: 105084.
[19]
Chakraborty J P, KunzruD. J. Anal. Appl. Pyrol., 2009, 86(1): 44.
[20]
Jin B T, Jing K, Liu J, Zhang X W, Liu G Z. J. Anal. Appl. Pyrol., 2017, 125: 117.
[21]
Wang Y S, Cheng Y X, Li M H, Jiang P X, Zhu Y H. Fuel, 2021, 306: 121737.
[22]
Ward T A, Ervin J S, Striebich R C, Zabarnick S. J. Propuls. Power, 2004, 20(3): 394.
[23]
Dardas Z, Süer M G, Ma Y H, Moser W R. J. Catal., 1996, 162(2): 327.
[24]
Wang Z, Guo Y S, Lin R S. J. Anal. Appl. Pyrol., 2009, 85(1/2): 534.
[25]
Xing Y, Xie W J, Fang W J, Guo Y S, Lin R S. Energy Fuels, 2009, 23(8): 4021.
[26]
Jia Z J, Huang H Y, Zhou W X, Qi F, Zeng M R. Energy Fuels, 2014, 28(9): 6019.
[27]
Zhou W X, Jia Z J, Qin J, Bao W, Yu B. Chem. Eng. J., 2014, 243: 127.
[28]
Billingsley M, Edwards T, Shafer L, Bruno T. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2010.
[29]
Lovestead T M, Bruno T J. Energy Fuels, 2009, 23(7): 3637.
[30]
DeBlase A F, Bruening C R, Lewis W K, Bunker C E. Energy Fuels, 2019, 33(11): 10861.
[31]
MacDonald M E, Ren W, Zhu Y Y, DavidsonD F, Hanson R K. Fuel, 2013, 103: 1060.
[32]
Edwards T, DeWitt M, Shafer L, BrooksD, Huang H, Bagley S, Ona J, Wornat J. 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Canberra, Australia. Reston, Virigina: AIAA, 2006, 7973.
[33]
Edwards T. 48th AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit, 2012.
[34]
Yu J, Eser S. Fuel, 2000, 79(7): 759.
[35]
Gascoin N, Gillard P, Abraham A. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2010.
[36]
Liu C, Qiu S Y, Huang H M, Guo P, Huo E G. Materials Reports, 2019, 33(08): 1251.
(刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 材料导报, 2019, 33(08): 1251.).
[37]
Li G N, Li C Y, Wang W N, Shen W, Lyu J, Wang W L. J. Fuel Chem. Technol., 2013, 41(9): 1136.
(李国娜, 李春迎, 王渭娜, 沈文, 吕剑, 王文亮. 燃料化学学报, 2013, 41(9): 1136.).
[38]
Commodo M, Fabris I, Groth C P T, Gülder Ö L. Energy Fuels, 2011, 25(5): 2142.
[39]
Ben Amara A, Kaoubi S, Starck L. Fuel, 2016, 173: 98.
[40]
Jiang R P, Liu G Z, He X Y, Yang C H, Wang L, Zhang X W, Mi Z T. J. Anal. Appl. Pyrol., 2011, 92(2): 292.
[41]
SunD A, Du Y M, Zhang J W, Jiao Y, Li Y, Wang Z X, Li C Y, Feng H, Lu J. Fuel, 2017, 194: 266.
[42]
Konda S, Vuchuru K, Nalabala M, Dinda S. J. Supercrit. Fluids, 2022, 191: 105757.
[43]
Liu Y J, Gong S Y, Wang H Y, Wang L, Zhang X W, Liu G Z. J. Anal. Appl. Pyrol., 2020, 149: 104864.
[44]
Yue L, Li G Q, He G J, Guo Y S, Xu L, Fang W J. Chem. Eng. J., 2016, 283: 1216.
[45]
Li G Q, Zhang C F, Wei H, Xie H J, Guo Y S, Fang W J. Fuel, 2016, 163: 148.
[46]
SunD A, Li C Y, Du Y M, Kou L G, Zhang J W, Li Y, Wang Z X, Li J W, Feng H, Lu J. Fuel, 2019, 239: 659.
[47]
Zhang Q, Liu G Z, Wang L, Zhang X W, Li G Z. Energy Fuels, 2014, 28(7): 4431.
[48]
DeWitt M J, Edwards T, Shafer L, BrooksD, Striebich R, Bagley S P, Wornat M J. Ind. Eng. Chem. Res., 2011, 50(18): 10434.
[49]
Urata K, Furukawa S, Komatsu T. Appl. Catal. A Gen., 2014, 475: 335.
[50]
Ji Y J, Yang H H, Yan W. Catalysts, 2017, 7(12): 367.
[51]
Luo J, Bhaskar B V, Yeh Y H, Gorte R J. Appl. Catal. A Gen., 2014, 478: 228.
[52]
Rownaghi A A, Rezaei F, Hedlund J. Chem. Eng. J., 2012, 191: 528.
[53]
Meng F X, Liu G Z, Qu SD, Wang L, Zhang X W, Mi Z T. Ind. Eng. Chem. Res., 2010, 49(19): 8977.
[54]
Qu SD, Liu G Z, Meng F, Wang L, Zhang X W. Energy Fuels, 2011, 25(7): 2808.
[55]
Qiu Y, Zhao G L, Liu G Z, Wang L, Zhang X W. Ind. Eng. Chem. Res., 2014, 53(47): 18104.
[56]
Mańko M, Chal R, Trens P, MinouxD, GÉrardin C, Makowski W. Microporous Mesoporous Mater., 2013, 170: 243.
[57]
Meng F X, Liu G Z, Wang L, Qu SD, Zhang X W, Mi Z T. Energy Fuels, 2010, 24(5): 2848.
[58]
Asadi S, Vafi L, Karimzadeh R. Microporous Mesoporous Mater., 2018, 255: 253.
[59]
Ji Y J, Shi B F, Yang H H, Yan W. Appl. Catal. A Gen., 2017, 533: 90.
[60]
Ji Y J, Yang H H, Yan W. Fuel, 2019, 243: 155.
[61]
Zhao T T, Li F W, Yu H C, Ding S L, Li Z X, Huang X Y, Li X, Wei X H, Wang Z L, Lin H F. Appl. Catal. A Gen., 2019, 575: 101.
[62]
Kim S, Park G, Kim S K, Kim Y T, Jun K W, Kwak G. Appl. Catal. B Environ., 2018, 220: 191.
[63]
Egeblad K, Christensen C H, Kustova M, Christensen C H. Chem. Mater., 2008, 20(3): 946.
[64]
Kim J C, Ryoo R, Opanasenko M V, Shamzhy M V, Čejka J. ACS Catal., 2015, 5(4): 2596.
[65]
Petushkov A, Yoon S, Larsen S C. Microporous Mesoporous Mater., 2011, 137(1/3): 92.
[66]
Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. J. Am. Chem. Soc., 2010, 132(12): 4169.
[67]
Kim J, Kim W, Seo Y, Kim J C, Ryoo R. J. Catal., 2013, 301: 187.
[68]
Blasco T, Corma A, Martineztriguero J. J. Catal., 2006, 237(2): 267.
[69]
Song Z X, Takahashi A, Nakamura I, Fujitani T. Appl. Catal. A Gen., 2010, 384(1/2): 201.
[70]
Ji Y J, Yang H H, Zhang Q, Yan W. J. Solid State Chem., 2017, 251: 7.
[71]
Mao R L V, Le T S, Fairbairn M, Muntasar A, Xiao S, Denes G. Appl. Catal. A, 1999, 185(1): 41.
[72]
Xu T, Zhang Q H, Song H, Wang Y. J. Catal., 2012, 295: 232.
[73]
Sang Y, Jiao Q Z, Li H S, Wu Q, Zhao Y, Sun K N. J. Nanopart. Res., 2014, 16(12): 2755.
[74]
Zhang L K, Qu SD, Wang L, Zhang X W, Liu G Z. Catal. Today, 2013, 216: 64.
[75]
Wang L, Diao Z H, Tian Y J, Xiong Z Q, Liu G Z. Energy Fuels, 2016, 30(9): 6977.
[76]
Liu G Z, Zhao G L, Meng F X, Qu SD, Wang L, Zhang X W. Energy Fuels, 2012, 26(2): 1220.
[77]
Long L, Lan Z Z, Han Z X, Qiu Y F, Zhou W X. ACS Appl. Energy Mater., 2018, 1(8): 4130.
[78]
Kotrel S, Knözinger H, Gates B C. Microporous Mesoporous Mater., 2000, 35/36: 11.
[79]
Buurmans I L C, Pidko E A, de Groot J M, Stavitski E, van Santen R A, Weckhuysen B M. Phys. Chem. Chem. Phys., 2010, 12(26): 7032.
[80]
Mun J, Jeon H, Jeong B, Jung J. Catal. Today, 2021, 375: 537.
[81]
Diao Z H, RongD, Hou X, Chen Y L, Zheng P F, Liu Y Q, SunD. Energy Fuels, 2019, 33(12): 12696.
[82]
Bao S G, Liu G Z, Zhang X W, Wang L, Mi Z T. Ind. Eng. Chem. Res., 2010, 49(8): 3972.
[83]
Long L, Zhou W X, Qiu Y F, Lan Z Z. Energy, 2020, 192: 116540.
[84]
He L, Guo Y S, Wang B C, Lin R S. Journal of Propulsion Technology, 2003, 24(3): 278.
(何龙, 郭永胜, 王彬成, 林瑞森. 推进技术, 2003, 24(3): 278.).
[85]
Shang Q H, Xu G L, Tang N F, Wu C T, Chen S, Cong Y. Microporous Mesoporous Mater., 2019, 288: 109616.
[86]
Sun W J, Liu G Z, Wang L, Zhang X W. Fuel, 2015, 144: 96.
[87]
Yue L, Lu X X, Chi H, Guo Y S, Xu L, Fang W J, Li Y, Hu S L. Fuel, 2014, 121: 149.
[88]
Guo Y S, Yang Y Z, Xiao J, Fang W J. Fuel, 2014, 117: 932.
[89]
Guo Y S, Yang Y Z, Fang W J, Hu S L. Appl. Catal. A Gen., 2014, 469: 213.
[90]
LiD, Fang W J, Wang H Q, Gao C, Zhang R Y, Cai K K. Ind. Eng. Chem. Res., 2013, 52(24): 8109.
[91]
Xie C L, Chen C, Yu Y, Su J, Li Y F, Somorjai G A, Yang PD. Nano Lett., 2017, 17(6): 3798.
[92]
Samoila P, Boutzeloit M, Salem I, UzioD, Mabilon G, Epron F, MarÉcot P, Especel C. Appl. Catal. A Gen., 2012, 415/416: 80.
[93]
Kim J, Park S H, Chun B H, Jeong B H, Han J S, Kim S H. Catal. Today, 2012, 185(1): 47.
[94]
Sharifianjazi F, Parvin N, Tahriri M. J. Non Cryst. Solids, 2017, 476: 108.
[95]
Xu Z K, Yue Y Y, Bao X J, Xie Z L, Zhu H B. ACS Catal., 2020, 10(1): 818.
[96]
Peng R S, Li S J, Sun X B, Ren Q M, Chen L M, Fu M L, Wu J L, YeD Q. Appl. Catal. B Environ., 2018, 220: 462.
[97]
Wu X, Chen X Y, Jin SD, He G J, Guo Y S, Fang W J. Energy Convers. Manag., 2019, 198: 111797.
[98]
YeD F, Zhao L, Bai S S, Guo Y S, Fang W J. ACS Appl. Mater. Interfaces, 2019, 11(43): 40078.
[99]
Jiao Y, Wang J L, Zhu Q, Li X Y, Chen Y Q. Energy Fuels, 2014, 28(8): 5382.
[100]
Chen Z, Chen L L, Jiang M, Gao X Y, Huang M L, Li Y X, Ren L P, Yang Y, Yang Z Z. Appl. Surf. Sci., 2020, 510: 145401.
[101]
Zhang J, Chen T, Jiao Y, Wang L L, Wang J L, Chen Y Q, Zhu Q, Li X Y. Appl. Surf. Sci., 2020, 507: 145113.
[102]
Jiao Y, Chen T, Wang L L, Yao P, Zhang J, Chen Y S, Chen Y Q, Wang J L. Ind. Eng. Chem. Res., 2020, 59(10): 4338.
[103]
Nassreddine S, Massin L, Aouine M, Geantet C, Piccolo L. J. Catal., 2011, 278(2): 253.
[104]
Zhang J, Cheng M, Jiao Y, Wang L L, Wang J L, Chen Y Q, Li X Y. Appl. Surf. Sci., 2021, 559: 149950.
[105]
Kondoh H, Tanaka K, Nakasaka Y, Tago T, Masuda T. Fuel, 2016, 167: 288.
[106]
Jiao Y, Liu A K, Li C Y, Wang J L, Zhu Q, Li X Y, Chen Y Q. J. Anal. Appl. Pyrol., 2015, 111: 100.
[107]
Jiao Y, Li S S, Liu B, Du Y M, Wang J L, Lu J, Chen Y Q. Appl. Therm. Eng., 2015, 91: 417.
[108]
Hou X, Qiu Y, Tian Y J, Diao Z H, Zhang X W, Liu G Z. Chem. Eng. J., 2018, 349: 297.
[109]
Foo R, Vazhnova T, LukyanovD B, Millington P, Collier J, Rajaram R, Golunski S. Appl. Catal. B Environ., 2015, 162: 174.
[110]
Shao X C, Zhang X T, Yu W G, Wu Y Y, Qin Y C, Sun Z L, Song L J. Appl. Surf. Sci., 2012, 263: 1.
[111]
Camposeco R, Castillo S, Mejia-Centeno I, Navarrete J, Rodriguez-Gonzalez V. Microporous Mesoporous Mater., 2016, 236: 235.
[112]
Jiao Y, Zhang H, Li S S, Guo C H, Yao P, Wang J L. Fuel, 2018, 233: 724.
[113]
Kenney C, Maham Y, Nelson A E. Thermochim. Acta, 2005, 434(1/2): 55.
[114]
Blasco T, Nieto J M L. Appl. Catal. A Gen., 1997, 157(1/2): 117.
[115]
Duan A J, Wan G F, Zhao Z, Xu C M, Zheng Y Y, Zhang Y, Dou T, Bao X J, Chung K. Catal. Today, 2007, 119(1/4): 13.
[116]
Zhang H, Wang Z Z, Li S S, Jiao Y, Wang J L, Zhu Q, Li X Y. Appl. Therm. Eng., 2017, 111: 811.
[117]
Hong E, Sim H I, Shin C H. Chem. Eng. J., 2016, 292: 156.
[118]
Chakraborty J P, KunzruD. J. Anal. Appl. Pyrol., 2012, 95: 48.
[119]
Androvič L, Bartáček J, Sedlák M. Res. Chem. Intermed., 2016, 42(6): 5133.
[120]
Wang Z, Lin R S, Fang W J, Li G, Guo Y S, Qin Z W. Energy, 2006, 31(14): 2773.
[121]
Wang Z, Guo Y S, Lin R S. Energy Convers. Manag., 2008, 49(8): 2095.
[122]
WickhamD T, Engel J R, Hitch BD, Karpuk M E. J. Propuls. Power, 2001, 17(6): 1253.
[123]
Liu G Z, Han Y J, Wang L, Zhang X W, Mi Z T. Energy Fuels, 2008, 22(6): 3960.
[124]
Russell K E. Prog. Polym. Sci., 2002, 27(6): 1007.
[125]
YeD F, Mi J, Bai S S, Zhang L F, Guo Y S, Fang W J. Fuel, 2019, 254: 115667.
[126]
Lamy C M, Sallin O, Loussert C, Chatton J Y. ACS Nano, 2012, 6(2): 1176.
[127]
Jia Z J, Wang ZD, Cheng Z J, Zhou W X. Combust. Flame, 2016, 165: 246.
[128]
Guo G S, Ren Y, Yu Y B, Liao Z W, Jiang B B, Yang Y, He G J, Fang W J, Wang JD, Yang Y R. Fuel, 2021, 299: 120907.
[129]
He G J, Li G Q, Ying H, Guo Y S, Fang W J. Fuel, 2015, 161: 295.
[130]
He G J, Shen Y Y, Li J, Zhang L F, Guo Y S, DionysiouDD, Fang W J. Fuel, 2017, 200: 62.
[131]
Mi J, YeD F, Dai Y T, Xie H J, WuD, Sun H Y, Guo Y S, Fang W J. Fuel, 2020, 270: 117433.
[132]
Craciun R, Shereck B, Gorte R J. Catal. Lett., 1998, 51(3/4): 149.
[133]
Faur Ghenciu A. Curr. Opin. Solid State Mater. Sci., 2002, 6(5): 389.
[134]
Filippi M, Bruno C. Int. J. Energ. Mater. Chem. Propuls., 2002, 5(1/6): 546.
[135]
ZhangD R, Zhang X X, Hou L Y. J. Aerosp. Power, 2018, 33(8): 1830.
(张定瑞, 张枭雄, 侯凌云. 航空动力学报, 2018, 33(8): 1830.).
[136]
Hou L Y, Dong N, Ren Z Y, Zhang B, Hu S L. Fuel Process. Technol., 2014, 128: 128.
[137]
Hou L Y, Jia Z, Gong J S, Xhou Y, Piao Y. J. Propuls. Power, 2012, 28(3): 453.
[138]
Zheng Q C, Xiao Z R, Xu J S, Pan L, Zhang X W, Zou J J. Fuel, 2021, 286: 119371.
[139]
Feng Y, Liu Y N, Cao Y, Gong K Y, Liu S Y, Qin J. Energy, 2020, 193: 116738.
[140]
Feng Y, Lv Q H, Deng S Y, Liu S Y, Cao Y, Qin J. Int. J. Energy Res., 2020, 44(9): 7386.
[141]
Li F Q, Li Z Z, Jing K, Wang L, Zhang X W, Liu G Z. Energy Fuels, 2018, 32(6): 6524.
[142]
Li Y, Wang J B, Xie G N, Sunden B. Chem. Eng. Sci., 2021, 244: 116806.
[143]
Liu Y Y, Chen R, Liu J, Zhang X W. Trans. Tianjin Univ., 2022, 28(3): 199.
[144]
Cao T Y, Huang R J, Gorte R J, Vohs J M. Appl. Catal. A Gen., 2020, 590: 117372.
[145]
Wang C, Du C P, Shang J X, Zhu Y H, Yao HD, Xu M L, Shan S Q, Han W, Du Z G, Yang Z B, LiD. J. Anal. Appl. Pyrol., 2023, 169: 105867.
[146]
Edwards T. Combust. Sci. Technol., 2006, 178(1/3): 307.
[147]
Tomioka S, Hattori M, Onodera T, Isono T. Trans. Japan Soc. Aero. S Sci., 2023, 66(3): 83.
[148]
Lee T H, Mun S, Kim S H, Lee K B. J. Ind. Eng. Chem., 2021, 98: 389.
[149]
Sim H S, Yetter R A, Hong S, vanDuin A C T, DabbsD M, Aksay I A. Combust. Flame, 2020, 217: 212.
[150]
Hou L Y, ZhangD R, Zhang X X. Fuel Process. Technol., 2017, 167: 655.
[151]
Xu K K, Sun X, Meng H. Int. J. Therm. Sci., 2018, 132: 209.
[152]
Tian K, Tang Z C, Wang J, Ma T, Zeng M, Wang Q W. Energy, 2022, 260: 125160.
[153]
Liu S Y, Feng Y, Cao Y, Gong K Y, Zhou W X, Bao W. Int. J. Therm. Sci., 2019, 137: 199.
[154]
Xie W J, Fang W J, LiD, Xing Y, Guo Y S, Lin R S. Energy Fuels, 2009, 23(6): 2997.
[155]
Lee T H, Kang S, Kim S H. Korean J. Chem. Eng., 2019, 57(5):611.
[156]
Wang H Y, Yang Z N, Liu J, Li G Z, Zhang X W. Fuel Process. Technol., 2020, 198: 106229.
[157]
Gao M Y, Hou L Y, Zhang X X, ZhangD R. Energy Fuels, 2019, 33(7): 6126.
[158]
Fau G, Gascoin N, Steelant J. J. Anal. Appl. Pyrol., 2014, 108: 1.
[159]
Hubesch R, Mazur M, Föger K, Selvakannan P R, Bhargava S K. Chem. Commun., 2021, 57(75): 9586.
[160]
Rahbar Shamskar F, Rezaei M, Meshkani F. Int. J. Hydrog. Energy, 2017, 42(7): 4155.
[161]
Yajun J, Honghui Y, Zhaohui L, Qincheng B. ACTA Petrol. Sin., 2021, 37(2): 447.
[162]
Tian K, Yang P, Klemeš J J, Ma T, Zeng M, Wang Q W. Aerosp. Sci. Technol., 2023, 138: 108357.
[163]
Singh R K, Patil T, PandeyD, Tekade S P, Sawarkar A N. J. Environ. Manag., 2022, 301: 113854.
[164]
Ji Y J, Yang H H, Liu Z H, Bi Q C. Acta Petrolei Sin. Petroleum Process. Sect., 2021, 37(5): 1114.
(姬亚军, 杨鸿辉, 刘朝晖, 毕勤成. 石油学报(石油加工), 2021, 37(5): 1114.).
[165]
SunD A, Li C Y, Du Y M, Zhang W, Lv J. Chemical Industry and Engineering Progress, 2012, 31(09): 1959.
(孙道安, 李春迎, 杜咏梅, 张伟, 吕剑. 化工进展, 2012, 31(09): 1959.).
[166]
David Hernandez A, Kaisalo N, Simell P, Scarsella M. Appl. Catal. B Environ., 2019, 258: 117977.

Funding

National Key R&D Program of China(2022YFB4201803)
Key Program of the National Natural Science Foundation of China(52236010)
Key Program of the National Natural Science Foundation of China(52376173)
PDF(6233 KB)

Accesses

Citation

Detail

Sections
Recommended

/