Research Progress on Electromagnetic Wave Absorption of Silicon Carbide-Based Materials

Yuanjia Xia, Guobin Chen, Shuang Zhao, Zhifang Fei, Zhen Zhang, Zichun Yang

Prog Chem ›› 2024, Vol. 36 ›› Issue (1) : 145-158.

PDF(52707 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(52707 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (1) : 145-158. DOI: 10.7536/PC230506
Review

Research Progress on Electromagnetic Wave Absorption of Silicon Carbide-Based Materials

Author information +
History +

Abstract

The research of high-performance electromagnetic wave-absorbing materials (WAM) is of great significance to enhance the stealth performance of weapons and equipment and solve the electromagnetic pollution problem. Silicon carbide (SiC) materials have good resistance to high temperature, corrosion and chemical stability, and show good application prospects in the field of electromagnetic wave absorption. However, the intrinsic properties of SiC materials are weak, and how to improve their wave-absorbing properties is an important research topic. Based on the electromagnetic wave-absorbing mechanism of SiC materials, firstly, the research status of SiC-based WAM with different morphologies (core-shell structure, aerogel structure, fibrous structure, hollow structure, MOFs structure, etc.) is analyzed and summarized. In addition, the research progress of composites of SiC with silicon carbide fibres, carbon materials and magnetic substances in the field of wave absorption is introduced in detail. The development status of special types of SiC-based WAM (SiC-based high-temperature WAM, SiC-based wave absorbing metamaterials, and SiC-based multifunctional WAM) is also reviewed. Finally, the future development direction of SiC-based WAM is prospected.

Contents

1 Introduction

2 absorbing mechanism of dielectric Absorbing materials

2.1 Evaluation mechanism of absorbing properties of materials

2.2 absorbing mechanism of dielectric Absorbing materials

2.3 Properties of intrinsic SiC materials

3 Research status of SiC-based absorbing materials with different morphologies

3.1 Fibrous structure

3.2 Hollow structure

3.3 Core-shell structure

3.4 MOFs structure

3.5 Porous aerogel structure

4 Research status of SiC matrix composite wave absorbing material

4.1 SiC fiber(SiCf)reinforced SiC wave absorbing material

4.2 SiC/magnetic composite wave absorbing material

4.3 SiC/C composite wave absorbing material

4.4 SiC-based multielement composite wave absorbing material

5 Special type SiC-based wave-absorbing material

5.1 SiC-based wave-absorbing metamaterial

5.2 SiC-based high temperature wave absorbing material

5.3 Multifunctional SiC-based wave absorbing material

6 Conclusion and outlook

Key words

silicon carbide / wave absorption / composite material / morphology control / metamaterial

Cite this article

Download Citations
Yuanjia Xia , Guobin Chen , Shuang Zhao , et al . Research Progress on Electromagnetic Wave Absorption of Silicon Carbide-Based Materials[J]. Progress in Chemistry. 2024, 36(1): 145-158 https://doi.org/10.7536/PC230506

References

[1]
Bian P F, Zhan B G, Gao P, Yu Q J, Yang Y G, Hong L, Zhang W L. Constr. Build. Mater., 2023, 364: 129903.
[2]
Xie Y, Guo Y, Cheng T, Zhao L, Wang T, Meng A, Zhang M, Li Z. Chem. Eng. J., 2023, 457: 141205.
[3]
Sun C, Li Q, Jia Z, Wu G, Yin P. Chem. Eng. J., 2023, 454: 140277.
[4]
Zhang Y H, Li Y, Liu H J, Zhang L, Zhang Y, Xu C C, Gong C H. Mater. Today Phys., 2023, 31: 100966.
[5]
Luo Z, Feng S, Li Y, Xu G, Fang G, Wang S, Zhu C, Liu C. Adv. Eng. Mater., 2023, 25(1): 2200976
[6]
Meriakri V, Parckhomenko M, Von Gratowski S, Bhowmik R N, Panneer Muthuselvam I. J. Phys.: Conf. Ser., 2010, 200(8): 082024.
[7]
He J, Deng L, Liu S, Yan S, Lou H, Li Y, He L, Huang S. J. Magn. Magn. Mater., 2017, 444: 49.
[8]
Xie X B, Wang B L, Wang Y K, Ni C, Sun X Q, Du W. Chem. Eng. J., 2022, 428: 131160.
[9]
Xu H, Yin X, Zhu M, Li M, Zhang H, Wei H, Zhang L, Cheng L. Carbon, 2019, 142: 346.
[10]
Qiang R, Du Y, Wang Y, Wang N, Tian C, Ma J, Xu P, Han X. Carbon, 2016, 98: 599.
[11]
Tang J H, Ma L, Huo Q S, Yan J, Tian N, Xu F F. Polym. Compos., 2015, 36(10): 1799.
[12]
Shen Z, Chen J, Li B, Li G, Zhang Z, Hou X. J. Alloy. Compd., 2020, 815: 152388.
[13]
Wang F, Gu W, Chen J, Wu Y, Zhou M, Tang S, Cao X, Zhang P, Ji G. Nano Res., 2022, 15(4): 3720.
[14]
Liu J, Cao W Q, Jin H B, Yuan J, Zhang D, Cao M. J. Mater. Chem. C, 2015, 3(18): 4670.
[15]
Wu R B, Zhou K, Yue C Y, Wei J, Pan Y. Prog. Mater. Sci., 2015, 72: 1.
[16]
Casady J B, Johnson R W. Solid State Electron., 1996, 39(10): 1409.
[17]
Lv X Y, Ye F, Cheng L F, Zhang L T. J. Mater. Sci. Technol., 2022, 109: 94.
[18]
Peng C H, Chen P S, Chang C C. Ceram. Int., 2014, 40(1): 47.
[19]
Liang C Y. Doctoral Dissertation of Harbin Institute of Technology, 2020.
(梁彩云. 哈尔滨工业大学博士论文, 2020.)
[20]
Deng W, Li T, Li H, Niu R, Dang A, Cheng Y, Wu H. Carbon, 2023, 202: 103.
[21]
Wen Q B, Feng Y, Yu Z J, Peng D L, Nicoloso N, Ionescu E, Riedel R. J. Am. Ceram. Soc., 2016, 99(8): 2655.
[22]
Zhong Z X, Zhang B, Ye J, Ren Y H, Ye F. J. Alloys Compd., 2022, 927: 167046.
[23]
Su K, Dou Q, Wang Y, Yin S, Li Q, Yang J, Alexandrov I V, Solovyev P V. Ceram. Int., 2023, 49(1): 450.
[24]
Ma J, Li W, Fan Y, Yang J, Yang Q, Wang J, Lou W, Zhou W, Naoyuki Nomura, Wang L, Jiang W. ACS Appl. Mater., 2019, 11(49): 46386.
[25]
Xu D W, Yang S, Chen P, Yu Q, Xiong X H, Wang J. Carbon, 2019, 146: 301.
[26]
Gu W, Tan J, Chen J, Zhang Z, Zhao Y, Yu J, Ji G. ACS Appl. Mater., 2020, 12(25): 28727.
[27]
Suo Q T, Xu B C, Wang J J. Rare Metal Materials and Engineering, 2019, 48(11): 3714.
(索庆涛, 许宝才, 王建江. 稀有金属材料与工程, 2019, 48(11): 3714.).
[28]
Acher O, Dubourg S. Phys. Rev. B, 2008, 77(10): 104440.
[29]
Zhang Z, Zhao S, Chen G B, Li K F, Fei Z F, Yang Z C. Progress in Chemistry, 2021, 33(09): 1511.
(张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 化学进展, 2021, 33(09): 1511.).
[30]
Backes W H, Bobbert P A, van Haeringen W. Phys. Rev. B, 1994, 49(11): 7564.
[31]
Hou Y, Cheng L, Zhang Y, Yang Y, Deng C, Yang Z, Chen Q, Du X, Zheng L. ACS Appl. Mater., 2017, 9(49): 43072.
[32]
Chen J H, Liu W N, Yang T, Li B, Su J D, Hou X M, Chou K C. Cryst. Growth Des., 2014, 14(9): 4624.
[33]
Dhage S, Lee H C, Hassan M S, Akhtar M S, Kim C Y, Sohn J M, Kin K J, Shin H S, Yang O B. Mater. Lett., 2009, 63(2): 174.
[34]
Gao Z, Ma Z, Liu Q, Zhang Z, Wang Y, Liu S, Liu L, Liu Y. Mater. Today Commun., 2023, 106591.
[35]
Tian H, Liu H T, Cheng H F. Ceram. Int., 2014, 40(7): 9009.
[36]
Li X, Wei J, Chen B, Qiao M. Ceram. Int., 2021, 47(12): 17615.
[37]
Liu X G. Doctoral Dissertation of National University of Defense Technology, 2010.
(刘旭光. 国防科学技术大学博士论文, 2010.).
[38]
Yi H, Cheng L, Zhang Y, Yang Y, Deng C, Yang Z, Qi C, Du X, Zhao C, Zheng L. ACS Appl. Mater., 2018, 10(35): 29876.
[39]
Gao H, Luo F, Wen Q, Duan S, Zhou W, Zhu D. Ceram. Int., 2018, 44(6): 6010.
[40]
Gao H, Luo F, Wen Q, Qing Y, Zhou W. Ceram. Int., 2019, 45(9): 11625.
[41]
Xiao T, Kuang J, Pu H, Zheng Q, Lu Y, Liu W, Cao W. J. Alloy. Compd., 2021, 862: 158032.
[42]
Zhou J, Wei B, Yao Z, Lin H, Tan R, Chen W, Guo X. J. Alloy. Compd., 2020, 819: 153021.
[43]
Ye X, Chen Z, Li M, Wang T, Cao W, Zhang J, Zhou Q, Liu H, Cui S. J. Alloy. Compd., 2020, 817: 153276.
[44]
Wang W C, Liu G, Wang L Y, Ge C Q, Wang W H, Hu L J, Yang X, Wang Z A. Rare Metal Materials and Engineering, 2022, 51(10): 3743.
(王伟超, 刘顾, 汪刘应, 葛超群, 王文豪, 胡灵杰, 杨鑫, 王子昂. 稀有金属材料与工程, 2022, 51(10): 3743.).
[45]
Zhong B, Sai T Q, Xia L, Yu Y L, Wen G W. Mater. Des., 2017, 121: 185.
[46]
Xiang Z, Wang Y, Yin X, He Q. Chem. Eng. J, 2023, 451: 138742.
[47]
Wei B, Zhou J T, Yao Z J, Ali Haidry A, Qian K, Lin H Y, Guo X L, Chen W J. Appl. Surf. Sci., 2020, 508: 145261.
[48]
Cui Y, Li B, He H, Zhou W, Chen B, Qian G. Acc. Chem. Res., 2016, 49 (3): 483.
[49]
Xu X Q. Doctoral Dissertation of Harbin Institute of Technology, 2021.
(徐雪青. 哈尔滨工业大学博士论文, 2021.).
[50]
Zhang K, Wu F, Xie A, Sun M, Dong W. ACS Appl. Mater, 2017, 9(38): 33041.
[51]
Yang R, Yuan J, Yu C, Yan K, Wu X. J. Alloy. Compd., 2020, 816: 152519.
[52]
Suwanmethanond V, Goo E, Liu P K T, Johnston G, Sahimi M, Tsotsis T T. Ind. Eng. Chem. Res., 2000, 39(9): 3264.
[53]
Konstantinov A O, Harris C I, Janzén E. Appl. Phys. Lett., 1994, 65(21): 2699.
[54]
Wang Z, Zhao H, Dai D, Hao H, Wang Z. Ceram. Int, 2022, 48(18): 26416.
[55]
Liang C Y, Wang Z J. Chem. Eng. J., 2019, 373: 598.
[56]
Su L, Wang H, Niu M, Fan X, Ma M, Shi Z, Guo S. ACS Nano, 2018, 12(4): 3103.
[57]
Cai Z, Su L, Wang H, Niu M, Gao H, Lu D, Li M. ACS Appl. Mater. Interfaces, 2020, 12(7): 8555.
[58]
Cai Z, Su L, Wang H, Niu M, Tao L, Lu D, Xu L, Li M, Gao H. ACS Appl. Mater. Interfaces, 2021, 13(14): 16704.
[59]
Dai D, Lan X, Wang Z. Compos. B. Eng., 2023, 248: 110376.
[60]
Ding D, Luo F, Shi Y, Chen J. J. Eng. Fiber. Fabr., 2014, 9(2): 155892501400900212.
[61]
Ding D H, Wang J, Xiao G Q. J Chin Ceram Soc, 2019, 47(1): 132.
(丁冬海, 王晶, 肖国庆. 硅酸盐学报, 2019, 47(1): 132.
[62]
Han T, Luo R, Cui G, Wang L. Ceram. Int., 2019, 45(6): 7797.
[63]
Mu Y, Zhou W, Hu Y, Ding D, Luo F, Qing Y. J. Alloy. Compd., 2015, 637: 261.
[64]
Huang B, Wang Z, Hu H, Tang X, Huang X, Yue J, Wang Y. Ceram. Int., 2020, 46(7): 9303.
[65]
Hou Y, Cheng L, Zhang Y, Yang Y, Deng C, Yang Z, Chen Q, Wang P, Zheng L. ACS Appl. Mater., 2017, 9(8): 7265.
[66]
Wang H, Wu L, Jiao J, Zhou J, Xu Y, Zhang H, Jiang Z, Shen B, Wang Z. J. Mater. Chem. A, 2015, 3(12): 6517.
[67]
Li Z J, Shi G M, Zhao Q. J. Mater. Sci.: Mater. Electron., 2017, 28: 5887.
[68]
Du B, Qian J, Hu P, He C, Cai M, Wang X, Shui A. Carbon, 2020, 157: 788.
[69]
Zhang Y N, Zhao Y J, Chen Q, Hou Y, Zhang Q, Cheng L F, Zheng L X. Ceram. Int., 2021, 47(6): 8123.
[70]
Cheng Y, Tan M, Hu P, Zhang X, Sun B, Yan L, Zhou S, Han W. Appl. Surf. Sci., 2018, 448: 138.
[71]
Chen Z, Wu Z, Su J, Li J, Gao B, Fu J, Zhang X, Huo K, Chu P K. Surf. Coat. Technol., 2021, 406: 126641.
[72]
Zhang M, Li Z, Wang T, Ding S, Song G, Zhao J, Meng A, Yu H, Li Q. Chem. Eng. J., 2019, 362: 619.
[73]
Ma L, Hamidinejad M, Liang C Y, Zhao B, Habibpour S, Yu A P, Filleter T, Park C B. Carbon, 2021, 179: 408.
[74]
Cui T J, Smith D R, Liu R. Metamaterials:Theory, Design, and Applications, Springer, 2010.
[75]
Pendry J B. Science, 2004, 306(5700): 1353.
[76]
Lee S H, Park C M, Seo Y M, Kim C K. Phys. Rev. B, 2010, 81(24): 241102.
[77]
Xi S, Chen H, Jiang T, Ran L, Huangfu J, Wu B, Kong J A, Chen M. Phys. Rev. Lett., 2009, 103(19): 194801.
[78]
Zhang Z. Doctoral Dissertation of Southeast University, 2019.
(张琤. 东南大学博士论文, 2019).
[79]
Mei H, Yang W, Zhao X, Yao L, Yao Y, Chen C, Cheng L. Mater. Des., 2021, 197: 109271.
[80]
Li W, Lin L, Li C, Wang Y, Zhang J. Results Phys., 2019, 12: 278.
[81]
Li W, Li C, Lin L, Wang Y, Zhang J. J. Alloy. Compd., 2019, 781: 883.
[82]
Han T, Luo R, Cui G, Wang L. J. Eur. Ceram. Soc., 2019, 39(5): 1743.
[83]
Qing Y, Mu Y, Zhou Y, Lou F, Zhu D, Zhuo W. J. Eur. Ceram. Soc., 2014, 34(10): 2229.
[84]
Zhou W, Yin R, Long L, Luo H, Hu W, Ding Y, Li Y. Ceram. Int., 2018, 44(11): 12301.
[85]
Li M, Yin X, Zheng G, Chen M, Tao M, Cheng L, Zhang L. J. Mater. Sci., 2015, 50: 1478.
[86]
Zhou Q. Doctoral Dissertation of Northwestern Polytechnical University, 2019.
(周倩. 西北工业大学博士论文, 2019.).
[87]
Wang X X, Cao W Q, Cao M S, Yuan J. Adv. Mater., 2020, 32(36): 2002112.
[88]
Liu J, Wei X, Gao L, Tao J, Xu L, Peng G, Jin H, Wang Y, Yao Z, Zhou J. J. Eur. Ceram. Soc., 2022, 43(4): 1237.
[89]
Song L, Fan B, Chen Y, Wang H, Li H, Zhang R. Ceram. Int., 2022, 48(17): 25140.
[90]
Song L M, Zhang F, Chen Y Q, Guan L, Zhu Y Q, Chen M, Wang H L, Putra B R, Zhang R, Fan B B. Nano Micro Lett., 2022, 14(1): 152.
[91]
Zhang B X, Wu C, Ye K C, Sun C Y, Wang Z J. Carbon, 2023, 213:118253.

Funding

National Natural Science Foundation of China(51802347)
Natural Science Foundation of Hubei Provincial(2022CFB939)
PDF(52707 KB)

Accesses

Citation

Detail

Sections
Recommended

/