Application of MOFs-Derived Metal Oxides in Catalytic Total Oxidation of VOCs

Tao Peng, Qianqian Chai, Chuanqiang Li, Xuxu Zheng, Lingjuan Li

Prog Chem ›› 2024, Vol. 36 ›› Issue (1) : 81-94.

PDF(14526 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(14526 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (1) : 81-94. DOI: 10.7536/PC230511
Review

Application of MOFs-Derived Metal Oxides in Catalytic Total Oxidation of VOCs

Author information +
History +

Abstract

The emission of a significant amount of VOCs has resulted in severe impacts on both human health and the environment. Currently, the most effective method for treating VOCs is their total oxidation to carbon dioxide and water through metal oxide catalysis. To enhance the catalytic performance of metal oxides, various synthetic strategies have been developed, including morphology, defect, and doping engineering. However, these processes are cumbersome and require further improvements to enhance the catalytic performance. On the other hand, metal-organic frameworks (MOFs)-derived metal oxides have been extensively used to catalyze the complete oxidation of VOCs. This is because of their tunable morphology, large specific surface area, high defect concentration, and excellent doping dispersion. However, there is a lack of a comprehensive summary of the application of MOFs-derived metal oxides in the total oxidation of VOCs. Therefore, this paper reviews the synthesis conditions, doping methods, and pyrolysis conditions of MOFs from the control strategy of derived metal oxides. It also summarizes the regulation methods and the relationship between the physicochemical properties of derived metal oxides and the total oxidation performance of VOCs. Additionally, this paper discusses the future development and challenges of MOFs-derived metal oxides.

Contents

1 Introduction

2 Regulatory strategies of MOFs-derived metal oxides and their application in catalytic total oxidation of VOCs

2.1 Synthesis conditions

2.2 Doping methods

2.3 Pyrolysis conditions

3 Mechanism of catalytic VOCs total oxidation

4 Conclusion and outlook

Key words

Metal-organic frameworks(MOFs) / Metal oxide / Nanomaterials / Volatile organic compounds (VOCs) / Total oxidation

Cite this article

Download Citations
Tao Peng , Qianqian Chai , Chuanqiang Li , et al . Application of MOFs-Derived Metal Oxides in Catalytic Total Oxidation of VOCs[J]. Progress in Chemistry. 2024, 36(1): 81-94 https://doi.org/10.7536/PC230511

References

[1]
Zhang Z X, Jiang Z, Shangguan W F. Catal. Today, 2016, 264: 270.
[2]
Zheng Y F, Fu K X, Yu Z H, Su Y, Han R, Liu Q L. J. Mater. Chem. A, 2022, 10(27): 14171.
[3]
He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z P. Chem. Rev., 2019, 119(7): 4471.
[4]
Zhang S H, You J P, Kennes C, Cheng Z W, Ye J X, Chen D Z, Chen J M, Wang L D. Chem. Eng. J., 2018, 334: 2625.
[5]
Kamal M S, Razzak S A, Hossain M M. Atmos. Environ., 2016, 140: 117.
[6]
Feng C, Xiong G, Jiang F, Gao Q, Chen C, Pan Y, Fei Z, Li Y, Lu Y, Liu C. Sep. Purif. Technol., 2022, 284: 120269.
[7]
Almaie S, Vatanpour V, Rasoulifard M H, Koyuncu I. Chemosphere, 2022, 306: 135655.
[8]
Li X Q, Zhang L, Yang Z Q, Wang P, Yan Y F, Ran J Y. Sep. Purif. Technol., 2020, 235: 116213.
[9]
Zheng S J, Qian Y, Wang X B, Vujanović M, Zhang Y J, Ur Rahman Z, Yang P H, Duan F, Tan H Z, De Toni A, Li Y, Mikulćić H. Fuel, 2022, 315: 123149.
[10]
Lelicińska-Serafin K, Rolewicz-Kalińska A, Manczarski P. Int. J. Environ. Res. Public Health, 2019, 16(17): 3009.
[11]
Xie L H, Liu X M, He T, Li J R. Chem, 2018, 4(8): 1911.
[12]
Yang R J, Guo Z J, Cai L X, Zhu R S, Fan Y Y, Zhang Y F, Han P P, Zhang W J, Zhu X G, Zhao Q T, Zhu Z Y, Chan C K, Zeng Z Y. Small, 2021, 17(50): 2103052.
[13]
Min X, Guo M M, Liu L Z, Li L, Gu J N, Liang J X, Chen C, Li K, Jia J P, Sun T H. J. Hazard. Mater., 2021, 406: 124743.
[14]
Zhao Q, Zheng Y F, Song C F, Liu Q L, Ji N, Ma D G, Lu X B. Appl. Catal. B Environ., 2020, 265: 118552.
[15]
Lou B Z, Shakoor N, Adeel M, Zhang P, Huang L L, Zhao Y W, Zhao W C, Jiang Y Q, Rui Y K. J. Clean. Prod., 2022, 363: 132523.
[16]
Kim H S, Kim H J, Kim J H, Kim J H, Kang S H, Ryu J H, Park N K, Yun D S, Bae J W. Catalysts, 2022, 12(1): 63.
[17]
Lu Y Q, Deng H, Pan T T, Wang L, Zhang C B, He H. Appl. Surf. Sci., 2022, 606: 154834.
[18]
Shen K, Gao B, Xia H Q, Deng W, Yan J R, Guo X H, Guo Y L, Wang X Y, Zhan W C, Dai Q G. Environ. Sci. Technol., 2022, 56(12): 8854.
[19]
Guo Y L, Wen M C, Li G Y, An T C. Appl. Catal. B Environ., 2021, 281: 119447.
[20]
Wu X, Han R, Liu Q, Su Y, Lu S, Yang L, Song C, Ji N, Ma D, Lu X. Catal. Sci. Technol., 2021, 11(16): 5374.
[21]
Huang H B, Xu Y, Feng Q Y, Leung D. Catal. Sci. \& Technol., 2015, 5: 2649.
[22]
Liu R, Wu H, Shi J H, Xu X M, Zhao D, Ng Y H, Zhang M L, Liu S J, Ding H. Catal. Sci. Technol., 2022, 12(23): 6945.
[23]
Li H L, Eddaoudi M, O'Keeffe M, Yaghi O M. Nature, 1999, 402(6759): 276.
[24]
He T, Kong X J, Bian Z X, Zhang Y Z, Si G R, Xie L H, Wu X Q, Huang H L, Chang Z, Bu X H, Zaworotko M J, Nie Z R, Li J R. Nat. Mater., 2022, 21(6): 689.
[25]
Hussain I, Iqbal S, Hussain T, Chen Y T, Ahmad M, Javed M S, AlFantazi A, Zhang K L. J. Mater. Chem. A, 2021, 9(33): 17790.
[26]
Li Y Z, Wang G D, Ma L N, Hou L, Wang Y Y, Zhu Z H. ACS Appl. Mater. Interfaces, 2021, 13(3): 4102.
[27]
Li D D, Xu H Q, Jiao L, Jiang H L. EnergyChem, 2019, 1(1): 100005.
[28]
Hu H, Guan B Y, Xia B Y, David Lou X W. J. Am. Chem. Soc., 2015, 137(16): 5590.
[29]
Cong Y Q, Chen X, Wang W X, Ye L J, Zhang Y, Lv S W. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 655: 130266.
[30]
Li C Q, Liu X, Yang X Y, Peng T, Li Y Q, Chen M W, Lin C C, Jiang J, Su Z Y, Kong W J, Wang Y. Ceram. Int., 2022, 48(13): 18460.
[31]
Zhou W X, Tang Y J, Zhang X Y, Zhang S T, Xue H G, Pang H. Coord. Chem. Rev., 2023, 477: 214949.
[32]
Sanati S, Abazari R, Albero J, Morsali A, García H, Liang Z B, Zou R Q. Angewandte Chemie Int. Ed., 2021, 60(20): 11048.
[33]
De Villenoisy T, Zheng X R, Wong V, Mofarah S S, Arandiyan H, Yamauchi Y, Koshy P, Sorrell C C. Adv. Mater., 2023, 35(24): 2370174.
[34]
Reddy R K, Lin J N, Chen Y Y, Zeng C, Lin X M, Cai Y P, Su C. Coord. Chem. Rev., 2020, 420: 213434.
[35]
Zheng Y F, Zhao Q, Shan C P, Lu S C, Su Y, Han R, Song C F, Ji N, Ma D G, Liu Q L. ACS Appl. Mater. Interfaces, 2020, 12(25): 28139.
[36]
Wang L, Yin G Y, Yang Y Q, Zhang X D. React. Kinetics Mech. Catal., 2019, 128(1): 193.
[37]
Ma Y, Wang L, Ma J Z, Wang H H, Zhang C B, Deng H, He H. ACS Catal., 2021, 11(11): 6614.
[38]
Jian Y F, Tian M J, He C, Xiong J C, Jiang Z Y, Jin H, Zheng L R, Albilali R, Shi J W. Appl. Catal. B Environ., 2021, 283: 119657.
[39]
Xie Y J, Yu Y Y, Gong X Q, Guo Y, Guo Y L, Wang Y Q, Lu G Z. CrystEngComm, 2015, 17(15): 3005.
[40]
Lei J, Wang S, Li J P. Chem. Eng. Sci., 2020, 220: 115654.
[41]
Sun W J, Li X M, Sun C, Huang Z, Xu H L, Shen W. Catalysts, 2019, 9(8): 682.
[42]
Huang C, Gu X Y, Su X Y, Xu Z C, Liu R, Zhu H J. J. Solid State Chem., 2020, 289: 121497.
[43]
Zhao J H, Tang Z C, Dong F, Zhang J Y. Mol. Catal., 2019, 463: 77.
[44]
Dong F, Han W G, Guo Y, Han W L, Tang Z C. Chem. Eng. J., 2021, 405: 126948.
[45]
Li C Q, Liu X, Peng T, Zhang T, Lin C C, Zhang Y Y, Chai Q Q, Qiu W G, Song L Y. Appl. Surf. Sci., 2023, 619: 156698.
[46]
Lu S C, Han R, Wang H, Song C F, Ji N, Lu X B, Ma D G, Liu Q L. Chem. Eng. J., 2022, 448: 137629.
[47]
Feng C, Chen C, Xiong G Y, Yang D, Wang Z, Pan Y, Fei Z Y, Lu Y K, Liu Y Q, Zhang R D, Li X B. Appl. Catal. B Environ., 2023, 328: 122528.
[48]
Ma Y, Wang L, Ma J Z, Liu F D, Einaga H, He H. Environ. Sci. Technol., 2022, 56(13): 9751.
[49]
Zhang X D, Lv X T, Bi F K, Lu G, Wang Y X. Mol. Catal., 2020, 482: 110701.
[50]
Chen J J, Bai B B, Lei J, Wang P, Wang S, Li J P. Chem. Eng. Sci., 2022, 263: 118065.
[51]
Marshall C R, Staudhammer S A, Brozek C K. Chem. Sci., 2019, 10(41): 9396.
[52]
Mei J, Shen Y, Wang Q L, Shen Y, Li W, Zhao J K, Chen J R, Zhang S H. ACS Appl. Mater. Interfaces, 2022, 14(31): 35694.
[53]
Niu Y D, Yuan Y, Zhang Q, Chang F F, Yang L, Chen Z W, Bai Z Y. Nano Energy, 2021, 82: 105699.
[54]
Jang J S, Koo W T, Kim D H, Kim I D. ACS Cent. Sci., 2018, 4(7): 929.
[55]
Zhai C B, Zhang H P, Du L Y, Wang D X, Xing D J, Zhang M Z. CrystEngComm, 2020, 22(7): 1286.
[56]
Han W L, Zhao H J, Dong F, Tang Z C. Nanoscale, 2018, 10(45): 21307.
[57]
Zhang B X, Zhang J L, Liu C C, Sang X X, Peng L, Ma X, Wu T B, Han B X, Yang G Y. RSC Adv., 2015, 5(47): 37691.
[58]
Cheng X Q, Zhang A F, Hou K K, Liu M, Wang Y X, Song C S, Zhang G L, Guo X W. Dalton Trans., 2013, 42(37): 13698.
[59]
Wang S M, Liu H R, Zheng S T, Lan H L, Yang Q Y, Zheng Y Z. Sep. Purif. Technol., 2023, 304: 122378.
[60]
Guo H L, Zhu Y Z, Wang S, Su S Q, Zhou L, Zhang H J. Chem. Mater., 2012, 24(3): 444.
[61]
Sun D, Tang Y G, Ye D L, Yan J, Zhou H S, Wang H Y. ACS Appl. Mater. Interfaces, 2017, 9(6): 5254.
[62]
Mei J, Zhang S H, Pan G J, Cheng Z W, Chen J R, Zhao J K. J. Environ. Chem. Eng., 2022, 10(6): 108743.
[63]
Babu R, Roshan R, Kathalikkattil A C, Kim D W, Park D W. ACS Appl. Mater. Interfaces, 2016, 8(49): 33723.
[64]
Gu W H, Lv J, Quan B, Liang X H, Zhang B S, Ji G B. J. Alloys Compd., 2019, 806: 983.
[65]
Yue C G, Lin Y H, Sang J T, Li Z Y, Zhang P B, Fan M M, Leng Y, Jiang P P, Haryono A. Mater. Today Commun., 2022, 31: 103270.
[66]
Sun N, Zhang Y F, Wang L Y, Cao Z Z, Sun J M. J. Alloys Compd., 2022, 928: 167105.
[67]
Li Y X, Han W, Wang R X, Weng L T, Serrano-Lotina A, Bañares M A, Wang Q Y, Yeung K L. Appl. Catal. B Environ., 2020, 275: 119121.
[68]
Wang Q Y, Li Z M, Bañares M A, Weng L T, Gu Q F, Price J, Han W, Yeung K L. Small, 2019, 15(42): 1903525.
[69]
Chen X, Li J J, Chen X, Cai S C, Yu E Q, Chen J, Jia H P. ACS Appl. Nano Mater., 2018, 1(6): 2971.
[70]
Han D W, Ma X Y, Yang X Q, Xiao M L, Sun H, Ma L J, Yu X L, Ge M F. J. Colloid Interface Sci., 2021, 603: 695.
[71]
Wen M, Dong F, Tang Z C, Zhang J Y. Mol. Catal., 2022, 519: 112149.
[72]
Luo L, Huang R, Hu W, Yu Z S, Tang Z X, Chen L Q, Zhang Y H, Zhang D, Xiao P. ACS Appl. Nano Mater., 2022, 5(6): 8232.
[73]
Hu Z, Tang Z Y, Zhang T, Yong X, Mi R L, Li D, Yang X, Yang R T. Ind. Eng. Chem. Res., 2022, 61(14): 4803.
[74]
Lu T L, Su F C, Zhao Q, Li J X, Zhang C S, Zhang R Q, Liu P P. Sep. Purif. Technol., 2022, 296: 121436.
[75]
Luo Y J, Zheng Y B, Zuo J C, Feng X S, Wang X Y, Zhang T H, Zhang K, Jiang L L. J. Hazard. Mater., 2018, 349: 119.
[76]
Tu S, Chen Y, Zhang X Y, Yao J Z, Wu Y, Wu H X, Zhang J Y, Wang J L, Mu B, Li Z, Xia Q B. Appl. Catal. A Gen., 2021, 611: 117975.
[77]
Guo Z Y, Song L H, Xu T T, Gao D W, Li C C, Hu X, Chen G Z. Mater. Chem. Phys., 2019, 226: 338.
[78]
Sun H, Yu X L, Ma X Y, Yang X Q, Lin M Y, Ge M F. Catal. Today, 2020, 355: 580.
[79]
Zhang X D, Zhao Z Y, Zhao S H, Xiang S, Gao W K, Wang L, Xu J C, Wang Y X. J. Catal., 2022, 415: 218.
[80]
Wang L, Sun Y G, Zhu Y B, Zhang J, Ding J, Gao J D, Ji W X, Li Y Y, Wang L Q, Ma Y L. J. Colloid Interface Sci., 2022, 622: 577.
[81]
Hu W, Huang J C, Xu J Y, Cheng S, Lyu Y, Xie D, Wang Z Q. Fuel Process. Technol., 2022, 236: 107424.
[82]
Liu W X, Yin R L, Xu X L, Zhang L, Shi W H, Cao X H. Adv. Sci., 2019, 6(12): 1802373.
[83]
Jiang Y W, Gao J H, Zhang Q, Liu Z Y, Fu M L, Wu J L, Hu Y, Ye D Q. Chem. Eng. J., 2019, 371: 78.
[84]
Xu W J, Chen X, Chen J, Jia H P. J. Hazard. Mater., 2021, 403: 123869.
[85]
Lei J, Wang P, Wang S, Li J P, Xu Y P, Li S Y. Chin. J. Chem. Eng., 2022, 52: 1.
[86]
Chen X, Chen X, Cai S C, Yu E Q, Chen J, Jia H P. Appl. Surf. Sci., 2019, 475: 312.
[87]
Wang L D, Li Y L, Liu J, Tian Z X, Jing Y. Sep. Purif. Technol., 2021, 277: 119505.
[88]
Lei J, Wang S, Li J P, Xu Y P, Li S Y. Chem. Eng. Sci., 2022, 251: 117436.
[89]
Zhang Q, Jiang Y W, Gao J H, Fu M L, Zou S B, Li Y X, Ye D Q. Catalysts, 2020, 10(6): 681.
[90]
Hu Z Y, Chen J, Yan D X, Li Y, Jia H P, Lu C Z. Appl. Surf. Sci., 2021, 551: 149453.
[91]
Mao J W, Meng Q, Xu Z H, Xu L S, Fan Z, Zhang G L. Chem. Commun., 2022, 58(98): 13600.
[92]
Zhao J G, Wang P F, Liu C L, Zhao Q, Wang J L, Shi L, Xu G W, Abudula A, Guan G Q. J. Colloid Interface Sci., 2023, 629: 706.
[93]
Wang X, Zhao S N, Zhang Y B, Wang Z, Feng J, Song S Y, Zhang H J. Chem. Sci., 2016, 7(2): 1109.
[94]
Yang P, Song X L, Jia C C, Chen H S. J. Ind. Eng. Chem., 2018, 62: 250.
[95]
Lei J, Wang S, Li J P. Ind. Eng. Chem. Res., 2020, 59(13): 5583.
[96]
Li C Q, Liu X, Wang H B, He Y, Song L Y, Deng Y D, Cai S C, Li S M. Adv. Powder Technol., 2022, 33(1): 103373.
[97]
Chen X, Chen X, Yu E Q, Cai S C, Jia H P, Chen J, Liang P. Chem. Eng. J., 2018, 344: 469.
[98]
Zhang X D, Hou F L, Yang Y, Wang Y X, Liu N, Chen D, Yang Y Q. Appl. Surf. Sci., 2017, 423: 771.
[99]
Zhang X D, Hou F L, Li H X, Yang Y, Wang Y X, Liu N, Yang Y Q. Microporous Mesoporous Mater., 2018, 259: 211.
[100]
Cui L F, Zhao D, Yang Y, Wang Y X, Zhang X D. J. Solid State Chem., 2017, 247: 168.
[101]
Zhang X D, Li H X, Hou F L, Yang Y, Dong H, Liu N, Wang Y X, Cui L F. Appl. Surf. Sci., 2017, 411: 27.
[102]
Zheng J, Wang Z, Chen Z, Zuo S F. J. Rare Earths, 2021, 39(7): 790.
[103]
Zhang X D, Xiang S, Du Q X, Bi F K, Xie K L, Wang L. Mol. Catal., 2022, 522: 112226.
[104]
Zhao J H, Han W L, Tang Z C, Zhang J Y. Cryst. Growth Des., 2019, 19(11): 6207.
[105]
Zheng Y F, Liu Q L, Shan C P, Su Y, Fu K X, Lu S C, Han R, Song C F, Ji N, Ma D G. Environ. Sci. Technol., 2021, 55(8): 5403.
[106]
Li W W, Gao G Q, Wang L L, Xu H M, Huang W J, Yan N Q, Qu Z. Fuel, 2022, 320: 123983.
[107]
Li Z J, Ma C, Qi M, Li Y L, Qu Y C, Zhang Y, Zhou L L, Yun J. Mol. Catal., 2023, 535: 112857.
[108]
Yang Y Q, Dong H, Wang Y, He C, Wang Y X, Zhang X D. J. Solid State Chem., 2018, 258: 582.
[109]
Jiang T T, Wang X, Chen J Z, Zhang J J, Mai Y L. ChemistrySelect, 2022, 7(29): e202201409.
[110]
Yang S, Qi Z T, Wen Y C, Wang X X, Zhang S H, Li W, Li S J. Chem. Eng. J., 2023, 452: 139657.
[111]
Jiang S L, Li C H, Muhammad Y, Tang Y, Wang R M, Li J J, Li J, Zhao Z X, Zhao Z X. Appl. Catal. B Environ., 2023, 328: 122509.
[112]
Dong Y L, Zhao J Y, Zhang J Y, Chen Y, Yang X X, Song W N, Wei L G, Li W. Chem. Eng. J., 2020, 388: 124244.
[113]
Li R Z, Zhang L, Zhu S M, Fu S Y, Dong X P, Ida S, Zhang L X, Guo L M. Appl. Catal. A Gen., 2020, 602: 117715.
[114]
Liu P, Liao Y X, Li J J, Chen L W, Fu M L, Wu P Q, Zhu R L, Liang X L, Wu T L, Ye D Q. J. Colloid Interface Sci., 2021, 594: 713.
[115]
Zhang Z R, Hu G T, Zhao C C, Wei X L, Dou B J, Liang W J, Bin F. Fuel, 2023, 341: 127760.
[116]
Feng C, Jiang F, Xiong G Y, Chen C, Wang Z, Pan Y, Fei Z Y, Lu Y K, Li X B, Zhang R D, Liu Y Q. Chem. Eng. J., 2023, 451: 138868.
[117]
Zhang X D, Bi F K, Zhu Z Q, Yang Y, Zhao S H, Chen J F, Lv X T, Wang Y X, Xu J C, Liu N. Appl. Catal. B Environ., 2021, 297: 120393.

Funding

Chongqing Technical Innovation and Application Development Special Surface Project(cstc2020jscx-msxmX0071)
Chongqing Technical Innovation and Application Development Special Surface Project(CSTB2022TIAD-GPX0033)
Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K202300709)
PDF(14526 KB)

Accesses

Citation

Detail

Sections
Recommended

/