Tetraphenylethene-Based Covalent Organic Frameworks (COFs): Design, Synthesis and Applications

Ziqing Wang, Jinfeng Du, Futai Lu, Qiliang Deng

Prog Chem ›› 2024, Vol. 36 ›› Issue (1) : 67-80.

PDF(14733 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(14733 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (1) : 67-80. DOI: 10.7536/PC230516
Review

Tetraphenylethene-Based Covalent Organic Frameworks (COFs): Design, Synthesis and Applications

Author information +
History +

Abstract

Covalent organic frameworks (COFs) as a new class of crystalline porous materials are assembled by appropriate building blocks through covalent bonds. COFs have been utilized in many fields such as storage and separation of gases, catalysis, proton conduction, energy storage, optoelectronics, sensing and biomedicine due to their regular channels, high thermal stability, high crystallinity and adjustable structure. In recent years, tetraphenylethylene-based covalent organic frameworks (TPE-based COFs) have attracted much attention due to their obvious aggregation induced luminescence effect, simple synthesis and easy functionalization. In this paper, the construction units, topological structures, synthesis strategies and application progress of TPE-based COFs in different fields are briefly reviewed. Finally, the development prospects and possible challenges of TPE-based COFs are pointed out.

Contents

1 Introduction

2 Construction unit and topological structure of TPE-based COFs

3 Synthesis strategy of TPE-based COFs

4 Applications

4.1 Catalysis

4.2 Adsorption

4.2.1 Ions adsorption

4.2.2 Gas adsorption

4.2.3 Biomolecule adsorption

4.3 Sensors

4.3.1 Sensors for detecting explosives

4.3.2 Ion sensors

4.3.3 Acid-base sensors

4.3.4 Enantioselective sensors

4.3.5 Biosensors

4.4 Optoelectronic

4.4.1 Light emitting diode

4.4.2 Electrochemical energy storage

4.4.3 Others

4.5 Bio-related applications

5 Prospects and challenges

Key words

tetraphenylethylene / covalent organic frameworks / building blocks / topology / applications

Cite this article

Download Citations
Ziqing Wang , Jinfeng Du , Futai Lu , et al. Tetraphenylethene-Based Covalent Organic Frameworks (COFs): Design, Synthesis and Applications[J]. Progress in Chemistry. 2024, 36(1): 67-80 https://doi.org/10.7536/PC230516

References

[1]
Luo J D, Xie Z L, Lam J W Y, Cheng L, Tang B Z, Chen H Y, Qiu C F, Kwok H S, Zhan X W, Liu Y Q, Zhu D B. Chem. Commun., 2001, (18): 1740.
[2]
Wen J, Huang Z, Hu S, Li S, Li W Y, Wang X L. J. Hazard. Mater., 2016, 318: 363.
[3]
Selvaraj M, Rajalakshmi K, Ahn D H, Yoon S J, Nam Y S, Lee Y, Xu Y G, Song J W, Lee K B. Anal. Chimica Acta, 2021, 1148: 238178.
[4]
Zhan C, Zhang G X, Zhang D Q. ACS Appl. Mater. Interfaces, 2018, 10(15): 12141.
[5]
Zhang Y Y, Li Y X, Yang N, Yu X, He C H, Niu N, Zhang C Y, Zhou H P, Yu C, Jiang S C. Sens. Actuat. B Chem., 2018, 257: 1143.
[6]
Wang Z Y, Gu Y, Liu J Y, Cheng X, Sun J Z, Qin A J, Tang B Z. J. Mater. Chem. B, 2018, 6(8): 1279.
[7]
Wang Y L, Liu H L, Chen Z, Pu S Z. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 245: 118928.
[8]
Palma-Cando A, Woitassek D, Brunklaus G, Scherf U. Mater. Chem. Front., 2017, 1(6): 1118.
[9]
Lv W X, Yang Q T, Li Q, Li H Y, Li F. Anal. Chem., 2020, 92(17): 11747.
[10]
Lin G W, Peng H R, Chen L, Nie H, Luo W W, Li Y H, Chen S M, Hu R R, Qin A J, Zhao Z J, Tang B Z. ACS Appl. Mater. Interfaces, 2016, 8(26): 16799.
[11]
Liao C W, Hsu Y C, Chu C C, Chang C H, Krucaite G, Volyniuk D, Grazulevicius J V, Grigalevicius S. Org. Electron., 2019, 67: 279.
[12]
Huang C G, Zhou S N, Chen C, Wang X Y, Ding R, Xu Y S, Cheng Z W, Ye Z Q, Sun L J, Wang Z J, Hu D Y, Jia X D, Zhang G Y, Gao S. Small, 2022, 18(47): 2205062.
[13]
Su S, Ma Y F, Tian L M, Wang Z. Sci. Sin. Chimica, 2017, 47(9): 1075.
(苏姗, 马宇帆, 田立枚, 王卓. 中国科学: 化学, 2017, 47(9): 1075.).
[14]
Zhang C H, Wu Z T, Xie C X. ShanDong Chem. Ind., 2022, 51(19): 93.
( 张程昊, 吴中涛, 解从霞. 山东化工, 2022, 51(19): 93.).
[15]
Luo Y Q, Feng L, Zheng R L. AnHui Chem Ind, 2022, 48(4): 10.
(罗一权, 冯亮, 郑仁林. 安徽化工, 2022, 48(4): 10.).
[16]
Côté A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.
[17]
Côté A P, El-Kaderi H M, Furukawa H, Hunt J R, Yaghi O M. J. Am. Chem. Soc., 2007, 129(43): 12914.
[18]
Hunt J R, Doonan C J, LeVangie J D, Côté A P, Yaghi O M. J. Am. Chem. Soc., 2008, 130(36): 11872.
[19]
Waller P J, Gándara F, Yaghi O M. Acc. Chem. Res., 2015, 48(12): 3053.
[20]
Rodríguez-San-Miguel D, Zamora F. Chem. Soc. Rev., 2019, 48(16): 4375.
[21]
Liu R Y, Tan T K, Gong Y F, Chen Y Z, Li Z E, Xie S L, He T, Lu Z, Yang H, Jiang D L. Chem. Soc. Rev., 2021, 50(1): 120.
[22]
Geng K Y, He T, Liu R Y, Dalapati S, Tan K T, Li Z P, Tao S S, Gong Y F, Jiang Q H, Jiang D L. Chem. Rev., 2020, 120(16): 8814.
[23]
Guo L L, Yang L, Li M Y, Kuang L J, Song Y H, Wang L. Coord. Chem. Rev., 2021, 440: 213957.
[24]
Meng Z, Mirica K A. Chem. Soc. Rev., 2021, 50(24): 13498.
[25]
Patial S, Soni V, Kumar A, Raizada P, Ahamad T, Pham X M, Van Le Q, Nguyen V H, Thakur S, Singh P. Environ. Res., 2023, 218: 114982.
[26]
Shi Y Q, Yang J L, Gao F, Zhang Q C. ACS Nano, 2023, 17(3): 1879.
[27]
Corbett P T, Leclaire J, Vial L, West K R, Wietor J L, Sanders J K M, Otto S. Chem. Rev., 2006, 106(9): 3652.
[28]
Jiang S Y, Gan S X, Zhang X, Li H, Qi Q Y, Cui F Z, Lu J, Zhao X. J. Am. Chem. Soc., 2019, 141(38): 14981.
[29]
Jin E Q, Geng K Y, Lee K H, Jiang W M, Li J, Jiang Q H, Irle S, Jiang D L. Angew. Chem., 2020, 132(29): 12260.
[30]
Chen Z A, Wang K, Tang Y M, Li L, Hu X N, Han M X, Guo Z Y, Zhan H B, Chen B L. Angewandte Chemie Int. Ed., 2023, 62(1): e202213268.
[31]
Nguyen H L, Hanikel N, Lyle S J, Zhu C H, Proserpio D M, Yaghi O M. J. Am. Chem. Soc., 2020, 142(5): 2218.
[32]
Xiong Y F, Liao Q B, Huang Z P, Huang X, Ke C, Zhu H T, Dong C Y, Wang H S, Xi K, Zhan P, Xu F, Lu Y Q. Adv. Mater., 2020, 32(9): 1907242.
[33]
Lan Y S, Han X H, Tong M M, Huang H L, Yang Q Y, Liu D H, Zhao X, Zhong C L. Nat. Commun., 2018, 9: 5274.
[34]
Kang X, Wu X W, Han X, Yuan C, Liu Y, Cui Y. Chem. Sci., 2020, 11(6): 1494.
[35]
Nguyen H L, Gropp C, Ma Y H, Zhu C H, Yaghi O M. J. Am. Chem. Soc., 2020, 142(48): 20335.
[36]
EL-Mahdy A F M, Mohamed M G, Mansoure T H, Yu H H, Chen T, Kuo S W. Chem. Commun., 2019, 55(99): 14890.
[37]
Gong L, Gao Y, Wang Y H, Chen B T, Yu B Q, Liu W B, Han B, Lin C X, Bian Y Z, Qi D D, Jiang J Z. Catal. Sci. Technol., 2022, 12(21): 6566.
[38]
Xing X L, Liao Q B, Ahmed S A, Wang D N, Ren S B, Qin X, Ding X L, Xi K, Ji L N, Wang K, Xia X H. Nano Lett., 2022, 22(3): 1358.
[39]
Mohamed M G, Lee C C, EL-Mahdy A F M, Lüder J, Yu M H, Li Z, Zhu Z L, Chueh C C, Kuo S W. J. Mater. Chem. A, 2020, 8(22): 11448.
[40]
Patra B C, Bhattacharya S. Chem. Mater., 2021, 33(21): 8512.
[41]
Dalapati S, Jin E Q, Addicoat M, Heine T, Jiang D L. J. Am. Chem. Soc., 2016, 138(18): 5797.
[42]
Liu Y Z, Diercks C S, Ma Y H, Lyu H, Zhu C H, Alshmimri S A, Alshihri S, Yaghi O M. J. Am. Chem. Soc., 2019, 141(1): 677.
[43]
Peng L, Sun J, Huang J, Song C Y, Wang Q K, Wang L Q, Yan H G, Ji M B, Wei D P, Liu Y Q, Wei D C. Chem. Mater., 2022, 34(7): 2886.
[44]
Chen X, Addicoat M, Jin E Q, Xu H, Hayashi T, Xu F, Huang N, Irle S, Jiang D L. Sci. Rep., 2015, 5: 14650.
[45]
Pang Z F, Xu S Q, Zhou T Y, Liang R R, Zhan T G, Zhao X. J. Am. Chem. Soc., 2016, 138(14): 4710.
[46]
Dong J Q, Li X, Peh S B, Yuan Y D, Wang Y X, Ji D X, Peng S J, Liu G L, Ying S M, Yuan D Q, Jiang J W, Ramakrishna S, Zhao D. Chem. Mater., 2019, 31(1): 146.
[47]
Zhang B, Mao H Y, Matheu R, Reimer J A, Alshmimri S A, Alshihri S, Yaghi O M. J. Am. Chem. Soc., 2019, 141(29): 11420.
[48]
Han X H, Chu J Q, Wang W Z, Qi Q Y, Zhao X. Chin. Chemical Lett., 2022, 33(5): 2464.
[49]
Maschita J, Banerjee T, Lotsch B V. Chem. Mater., 2022, 34(5): 2249.
[50]
Li W, Wang R, Jiang H X, Chen Y, Tang A N, Kong D M. Talanta, 2022, 236: 122829.
[51]
Li X H, Tang H J, Gao L, Chen Z Y, Li H J, Wang Y H, Yang K X, Lu S Y, Wang K M, Zhou Q, Wang Z L. Polymer, 2022, 241: 124474.
[52]
Rogge S M J, Bavykina A, Hajek J, Garcia H, Olivos-Suarez A I, Sepúlveda-Escribano A, Vimont A, Clet G, Bazin P, Kapteijn F, Daturi M, Ramos-Fernandez E V, Llabrés i Xamena F X, Van Speybroeck V, Gascon J. Chem. Soc. Rev., 2017, 46(11): 3134.
[53]
Banerjee T, Gottschling K, Savasci G, Ochsenfeld C, Lotsch B V. ACS Energy Lett., 2018, 3(2): 400.
[54]
Yan Y, He T, Zhao B, Qi K, Liu H F, Xia B Y. J. Mater. Chem. A, 2018, 6(33): 15905.
[55]
Xu Z L, Cui X, Li Y H, Li Y W, Si Z J, Duan Q. Appl. Surf. Sci., 2023, 613: 155966.
[56]
Sick T, Hufnagel A G, Kampmann J, Kondofersky I, Calik M, Rotter J M, Evans A, Döblinger M, Herbert S, Peters K, Böhm D, Knochel P, Medina D D, Fattakhova-Rohlfing D, Bein T. J. Am. Chem. Soc., 2018, 140(6): 2085.
[57]
Rotter J M, Weinberger S, Kampmann J, Sick T, Shalom M, Bein T, Medina D D. Chem. Mater., 2019, 31(24): 10008.
[58]
Yu H P, Zhang J Z, Yan X R, Wu C G, Zhu X R, Li B W, Li T F, Guo Q Q, Gao J F, Hu M J, Yang J. J. Mater. Chem. A, 2022, 10(20): 11010.
[59]
Lv H W, Sa R J, Li P Y, Yuan D Q, Wang X C, Wang R H. Sci. China Chem., 2020, 63(9): 1289.
[60]
He C, Si D H, Huang Y B, Cao R. Angewandte Chemie Int. Ed., 2022, 61(40): e202207478.
[61]
Liu N, Shi L F, Han X H, Qi Q Y, Wu Z Q, Zhao X. Chin. Chemical Lett., 2020, 31(2): 386.
[62]
Gao Q, Li X, Ning G H, Xu H S, Liu C B, Tian B B, Tang W, Loh K P. Chem. Mater., 2018, 30: 1762.
[63]
Tian Y, Xu S Q, Qian C, Pang Z F, Jiang G F, Zhao X. Chem. Commun., 2016, 52(78): 11704.
[64]
Zhang Q. Masteral Dissertation of Nanjing University, 2019.
(张奇. 南京大学硕士论文, 2019.)
[65]
Li J Y, He Y, Zou Y C, Yan Y, Song Z G, Shi X D. Chin. Chem. Lett., 2022, 33: 3017.
[66]
Chen L J, Gong C T, Wang X K, Dai F N, Huang M C, Wu X W, Lu C Z, Peng Y W. J. Am. Chem. Soc., 2021, 143(27): 10243.
[67]
Cui D, Ding X S, Xie W, Xu G J, Su Z M, Xu Y H, Xie Y Z. CrystEngComm, 2021, 23(33): 5569.
[68]
Wang P, Xu Q, Li Z P, Jiang W M, Jiang Q H, Jiang D L. Adv. Mater., 2018, 30(29): 1801991.
[69]
He L W, Chen L, Dong X L, Zhang S T, Zhang M X, Dai X, Liu X J, Lin P, Li K F, Chen C L, Pan T T, Ma F Y, Chen J C, Yuan M J, Zhang Y G, Chen L, Zhou R H, Han Y, Chai Z F, Wang S A. Chem, 2021, 7(3): 699.
[70]
Lu Z X, Liu Y X, Liu X L, Lu S H, Li Y, Yang S X, Qin Y, Zheng L Y, Zhang H B. J. Mater. Chem. B, 2019, 7(9): 1469.
[71]
Zhang W, Qiu L G, Yuan Y P, Xie A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2012, 221/222: 147.
[72]
Gao Q, Li X, Ning G H, Leng K, Tian B B, Liu C B, Tang W, Xu H S, Loh K P. Chem. Commun., 2018, 54(19): 2349.
[73]
Faheem M, Aziz S, Jing X F, Ma T T, Du J Y, Sun F X, Tian Y Y, Zhu G S. J. Mater. Chem. A, 2019, 7(47): 27148.
[74]
Ding H M. Doctoral Dissertation of Wuhan University, 2018.
(丁慧敏. 武汉大学博士论文, 2018.).
[75]
Xiu J, Zhang N, Li C, Salah A, Wang G. Microporous Mesoporous Mater., 2021, 316: 110979.
[76]
Zheng M X, Yao C, Xie W, Xu Y H, Hu H. Bull. Chem. Soc. Jpn., 2021, 94(8): 2133.
[77]
Cui F Z, Xie J J, Jiang S Y, Gan S X, Ma D L, Liang R R, Jiang G F, Zhao X. Chem. Commun., 2019, 55(31): 4550.
[78]
Gong W, Dong Y J, Liu C Y, Shi H L, Yin M X, Li W J, Song Q B, Zhang C. Dyes Pigments, 2022, 204: 110464.
[79]
Wu X C, Zhang X D, Li Y J, Wang B W, Li Y, Chen L G. J. Mater. Sci., 2021, 56(3): 2717.
[80]
Wu X W, Han X, Xu Q S, Liu Y H, Yuan C, Yang S, Liu Y, Jiang J W, Cui Y. J. Am. Chem. Soc., 2019, 141(17): 7081.
[81]
Song L L, Gao W Q, Wang S W, Bi H Q, Deng S Y, Cui L, Zhang C Y. Sens. Actuat. B Chem., 2022, 373: 132751.
[82]
Dong J Q, Li X, Peh S B, Yuan Y D, Wang Y X, Ji D X, Peng S J, Liu G L, Ying S M, Yuan D Q, Jiang J W, Ramakrishna S, Zhao D. Chem. Mater., 2019, 31(1): 146.
[83]
Li G R, Tian W C, Zhong C, Yang Y X, Lin Z A. ACS Appl. Mater. Interfaces, 2022, 14(18): 21750.
[84]
Ding H M, Li J, Xie G H, Lin G Q, Chen R F, Peng Z K, Yang C L, Wang B S, Sun J L, Wang C. Nat. Commun., 2018, 9: 5234.
[85]
Sun Q, Aguila B, Lan P C, Ma S Q. Adv. Mater., 2019, 31(19): 1900008.
[86]
You J, Yuan F, Cheng S S, Kong Q Q, Jiang Y L, Luo X Z, Xian Y Z, Zhang C L. Chem. Mater., 2022, 34(15): 7078.
[87]
Guo L, Jia S, Diercks C S, Yang X J, Alshmimri S A, Yaghi O M. Angew. Chem. Int. Ed., 2020, 59(5): 2023.
[88]
Pang Z F, Zhou T Y, Liang R R, Qi Q Y, Zhao X. Chem. Sci., 2017, 8(5): 3866.
[89]
Peng Y W, Li L X, Zhu C Z, Chen B, Zhao M T, Zhang Z C, Lai Z C, Zhang X, Tan C L, Han Y, Zhu Y H, Zhang H. J. Am. Chem. Soc., 2020, 142(30): 13162.
[90]
Liang R R, Cui F Z, Ru-Han A, Qi Q Y, Zhao X. CCS Chem., 2020, 2(2): 139.

Funding

National Natural Science Foundation of China(2190080961)
PDF(14733 KB)

Accesses

Citation

Detail

Sections
Recommended

/