Structural Regulation and Design of Electrode Materials and Electrolytes for Fast-Charging Lithium-Ion Batteries

Disheng Yu, Changlin Liu, Xue Lin, Lizhi Sheng, Lili Jiang

Prog Chem ›› 2024, Vol. 36 ›› Issue (1) : 132-144.

PDF(5057 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5057 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (1) : 132-144. DOI: 10.7536/PC230521
Review

Structural Regulation and Design of Electrode Materials and Electrolytes for Fast-Charging Lithium-Ion Batteries

Author information +
History +

Abstract

Achieving fast charging of lithium-ion batteries is an effective way to promote the popularity of electric vehicles and solve environmental and energy problems. However, the slow kinetics and increased safety risks of conventional lithium-ion battery systems under fast charging conditions severely hinder the practical application of this technology. This paper reviews the latest research progress in the structural regulation and design of electrode materials and electrolytes for fast-charging lithium-ion batteries. First, we systematically introduce the research progress made in recent years within the scope of improving the diffusion rate of Li-ion in electrode materials by structural modulation of electrode materials. The review focused on optimizing the ion/electron conductivity of the materials and shortening the Li-ion transfer path. Then, we systematically introduce the methods to improve the fast charging performance through the regulation and design of electrolytes, in terms of improving the ion conductivity of electrolytes and regulating Li-ion solvation structure and then highlight the acceleration of Li-ion de-solvation process by regulating the lithium salt concentration and Li-ion solvent interactions with the goal of achieving promotion of Li-ion transfer at the phase interface. Finally, the key scientific issues facing fast-charging Li-ion batteries is summarized as well as the future research directions.

Contents

1 Introduction

2 Electrode materials

2.1 Expanding the material layer spacing

2.2 Nanostructure regulation

2.3 Surface coating

2.4 Porous structure regulation

2.5 Vertical array structure

2.6 Doping

3 Electrolytes

3.1 Low viscosity solvent

3.2 Additive

3.3 Regulating solvation

4 Conclusion and outlook

Key words

anode materials / cathode material / electrolytes / fast-charging / lithium-ion batteries

Cite this article

Download Citations
Disheng Yu , Changlin Liu , Xue Lin , et al . Structural Regulation and Design of Electrode Materials and Electrolytes for Fast-Charging Lithium-Ion Batteries[J]. Progress in Chemistry. 2024, 36(1): 132-144 https://doi.org/10.7536/PC230521

References

[1]
Richard S, Ralf W, Gerhard H, Tobias P, Martin W. Nat. Energy, 2018, 3: 267.
[2]
Naireeta D, Rajendra S, Richard R B, Kevin B. Energies, 2021, 14: 7566.
[3]
Collin R, Miao Y, Yokochi A, Enjeti P, von Jouanne A. Energies, 2019, 12(10): 1839.
[4]
Chen J Y, Ji C Z, Endler E, Li R H, Liu L S, Li Y L, Zheng S Q, Vetterlein S, Gao M, Du J Y, Parkes M, Ouyang M, Marinescu M, Offer G, Wu B. eTransportation, 2019, 1: 100011.
[5]
Okubo M, Hosono E, Kim J, Enomoto M, Kojima N, Kudo T, Zhou H S, Honma I. J. Am. Chem. Soc., 2007, 129(23): 7444.
[6]
Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058): 928.
[7]
Manuel W, Raffael R, Johannes K, Yehonatan L, Natasha R L, Philip M, Lukas S, Thomas W, Margret W M, Doron A, Martin W, Yair E E, Jürgen J. Adv. Energy Mater., 2021, 11: 2101126.
[8]
Yao Y X, Chen X, Yao N, Gao J H, Xu G, Ding J F, Song C L, Cai W L, Yan C, Zhang Q. Angewandte Chemie Int. Ed., 2023, 62(4): e202380461.
[9]
Zhang S S. J. Power Sources, 2006, 161(2): 1385.
[10]
Xu L, Xiao Y, Yang Y, Xu R, Yao Y X, Chen X R, Li Z H, Yan C, Huang J Q. Adv. Mater., 2023, 35(42): 2301881.
[11]
Xu L, Yang Y, Xiao Y, Cai W L, Yao Y X, Chen X R, Yan C, Yuan H, Huang J Q. J. Energy Chem., 2022, 67: 255.
[12]
Xu L, Xiao Y, Yang Y, Yang S J, Chen X R, Xu R, Yao Y X, Cai W L, Yan C, Huang J Q, Zhang Q. Angewandte Chemie Int. Ed., 2022, 61(39): e202210365.
[13]
Andrew M C, Alision R D, Stephen E T, Bryant J P, Andrew N J, Kandler S. J. Electrochem. Soc., 2019, 166: A1412.
[14]
Wang X, Zeng W, Hong L, Xu W W, Yang H K, Wang F, Duan H G, Tang M, Jiang H Q. Nat. Energy, 2018, 3(3): 227.
[15]
Jana A, García R E. Nano Energy, 2017, 41: 552.
[16]
Xu C, Ma G, Yang W, Che S, Li Y, Jia Y, Liu H L, Chen F J, Zhang G, Liu H C, Wu N, Huang G Y, Li Y F. Electrochimica Acta, 2022, 415: 140198.
[17]
Kim T H, Jeon E K, Ko Y, Jang B Y, Kim B S, Song H K. J. Mater. Chem. A, 2014, 2(20): 7600.
[18]
Jiang Y, Song D Y, Wu J, Wang Z X, Huang S S, Xu Y, Chen Z W, Zhao B, Zhang J J. ACS Nano, 2019, 13(8): 9100.
[19]
Wang S L, Zhang Z X, Deb A, Yang C C, Yang L, Hirano S I. Electrochimica Acta, 2014, 143: 297.
[20]
Wang G X, Liu H, Liu J, Qiao S Z, Lu G M, Munroe P, Ahn H. Adv. Mater., 2010, 22(44): 4944.
[21]
Wang X, Weng Q H, Yang Y J, Bando Y, Golberg D. Chem. Soc. Rev., 2016, 45(15): 4042.
[22]
Mendoza-Sánchez B, Gogotsi Y. Adv. Mater., 2016, 28(29): 6104.
[23]
Wang D D, Shan Z Q, Tian J H, Chen Z. Nanoscale, 2019, 11(2): 520.
[24]
Zhao Y, Peng L L, Liu B R, Yu G H. Nano Lett., 2014, 14(5): 2849.
[25]
Wang D D, Liu H D, Li M Q, Wang X F, Bai S, Shi Y, Tian J H, Shan Z Q, Meng Y S, Liu P, Chen Z. Energy Storage Mater., 2019, 21: 361.
[26]
Verma P, Novák P. Carbon, 2012, 50(7): 2599.
[27]
Jiang L L, Cheng X B, Peng H J, Huang J Q, Zhang Q. eTransportation, 2019, 2: 100033.
[28]
Wang C, Sheng L Z, Jiang M H, Lin X R, Wang Q, Guo M Q, Wang G, Zhou X M, Zhang X, Shi J Y, Jiang L L. J. Power Sources, 2023, 555: 232405.
[29]
Li H Q, Zhou H S. Chem. Commun., 2012, 48(9): 1201.
[30]
Lyu H L, Li J L, Wang T, Thapaliya B P, Men S, Jafta C J, Tao R M, Sun X G, Dai S. ACS Appl. Energy Mater., 2020, 3(6): 5657.
[31]
Guan Y B, Shen J R, Wei X F, Zhu Q Z, Zheng X H, Zhou S Q, Xu B. Appl. Surf. Sci., 2019, 481: 1459.
[32]
Kim D S, Kim Y E, Kim H. J. Power Sources, 2019, 422: 18.
[33]
Ran Q W, Zhao H Y, Shu X H, Hu Y Z, Hao S, Shen Q Q, Liu W, Liu J T, Zhang M L, Li H, Liu X Q. ACS Appl. Energy Mater., 2019, 2(5): 3120.
[34]
Cheng Q, Yuge R, Nakahara K, Tamura N, Miyamoto S. J. Power Sources, 2015, 284: 258.
[35]
Kim J, Nithya Jeghan S M, Lee G. Microporous Mesoporous Mater., 2020, 305: 110325.
[36]
Chen K H, Namkoong M J, Goel V, Yang C L. J. Power Sources, 2020, 471: 228475.
[37]
Billaud J, Bouville F, Magrini T, Villevieille C, Studart A R. Nat. Energy, 2016, 1(8): 16097.
[38]
Guo Y M, Jiang Y L, Zhang Q, Wan D Y, Huang C. J. Power Sources, 2021, 506: 230052.
[39]
Tu S B, Lu Z H, Zheng M T, Chen Z H, Wang X C, Cai Z, Chen C J, Wang L, Li C H, Seh Z W, Zhang S Q, Lu J, Sun Y M. Adv. Mater., 2022, 34(39): 2202892.
[40]
Cai Y X, Ku L, Wang L S, Ma Y T, Zheng H F, Xu W J, Han J T, Qu B H, Chen Y Z, Xie Q S, Peng D L. Sci. China Mater., 2019, 62(10): 1374.
[41]
Huang S F, Li Z P, Wang B, Zhang J J, Peng Z Q, Qi R J, Wang J, Zhao Y F. Adv. Funct. Mater., 2018, 28(10): 1706294.
[42]
Wang J X, Xia Y, Liu Y, Li W, Zhao D Y. Energy Storage Mater., 2019, 22: 147.
[43]
Zhu H, Liu B, Liang Y, Tu J P. Adv. Funct. Mater., 2020, 30: 2002665.
[44]
Wu J B, Xu Y L, Chen Y J, Li L, Wang H, Zhao J. J. Power Sources, 2018, 401: 142.
[45]
Verma P, Maire P, Novák P. Electrochimica Acta, 2010, 55(22): 6332.
[46]
Xu K. Chem. Rev., 2004, 104(10): 4303.
[47]
Hilbig P, Ibing L, Winter M, Cekic-Laskovic I. Energies, 2019, 12(15): 2869.
[48]
Logan E R, Hall D S, Cormier M M E, Taskovic T, Bauer M, Hamam I, Hebecker H, Molino L, Dahn J R. J. Phys. Chem. C, 2020, 124(23): 12269.
[49]
Gao H P, Yan Q Z, Holoubek J, Yin Y J, Bao W, Liu H D, Baskin A, Li M Q, Cai G R, Li W K, Tran D, Liu P, Luo J, Meng Y S, Chen Z. Adv. Energy Mater., 2023, 13(5): 2202906.
[50]
Cai W L, Yao Y X, Zhu G L, Yan C, Jiang L L, He C X, Huang J Q, Zhang Q. Chem. Soc. Rev., 2020, 49(12): 3806.
[51]
Ramasubramanian A, Yurkiv V, Foroozan T, Ragone M, Shahbazian-Yassar R, Mashayek F. J. Phys. Chem. C, 2019, 123(16): 10237.
[52]
Shi J L, Ehteshami N, Ma J L, Zhang H, Liu H D, Zhang X, Li J, Paillard E. J. Power Sources, 2019, 429: 67.
[53]
Cheng F Y, Zhang X Y, Qiu Y G, Zhang J X, Liu Y, Wei P, Ou M Y, Sun S X, Xu Y, Li Q, Fang C, Han J T, Huang Y H. Nano Energy, 2021, 88: 106301.
[54]
Wang X Y, Li S Y, Zhang W D, Wang D, Shen Z Y, Zheng J P, Zhuang H L, He Y, Lu Y Y. Nano Energy, 2021, 89: 106353.
[55]
Zheng J M, Lochala J A, Kwok A, Daniel Deng Z, Xiao J. Adv. Sci., 2017, 4(8): 1700032.
[56]
Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. J. Am. Chem. Soc., 2014, 136(13): 5039.
[57]
Peled E, Menkin S. J. Electrochem. Soc., 2017, 164(7): A1703.
[58]
Suo L M, Xue W J, Gobet M, Greenbaum S G, Wang C, Chen Y M, Yang W L, Li Y X, Li J. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(6): 1156.
[59]
Yao Y X, Yao N, Zhou X R, Li Z H, Yue X Y, Yan C, Zhang Q. Adv. Mater., 2022, 34(45): 2206448.
[60]
Monroe C, Newman J. J. Electrochem. Soc., 2005, 152(2): A396.
[61]
Wu M F, Wen Z Y, Liu Y, Wang X Y, Huang L Z. J. Power Sources, 2011, 196(19): 8091.
[62]
Yao Y X, Wan J, Liang N Y, Yan C, Wen R, Zhang Q. J. Am. Chem. Soc., 2023, 145(14): 8001.
[63]
Xu R, Yan C, Xiao Y, Zhao M, Yuan H, Huang J Q. Energy Storage Mater., 2020, 28: 401.
[64]
Yamada Y, Yaegashi M, Abe T, Yamada A. Chem. Commun., 2013, 49(95): 11194.
[65]
Yamada Y, Wang J H, Ko S, Watanabe E, Yamada A. Nat. Energy, 2019, 4(4): 269.
[66]
Cao X, Zou L F, Matthews B E, Zhang L C, He X Z, Ren X D, Engelhard M H, Burton S D, El-Khoury P Z, Lim H S, Niu C J, Lee H, Wang C S, Arey B W, Wang C M, Xiao J, Liu J, Xu W, Zhang J G. Energy Storage Mater., 2021, 34: 76.
[67]
Jiang L L, Yan C, Yao Y X, Cai W L, Huang J Q, Zhang Q. Angewandte Chemie Int. Ed., 2021, 60(7): 3402.
[68]
Zhang G Z, Deng X L, Li J W, Wang J, Shi G L, Yang Y, Chang J, Yu K, Chi S S, Wang H, Wang P, Liu Z B, Gao Y, Zheng Z J, Deng Y H, Wang C Y. Nano Energy, 2022, 95: 107014.
[69]
Cai W L, Deng Y, Deng Z W, Jia Y, Li Z H, Zhang X M, Xu C, Zhang X Q, Zhang Y, Zhang Q. Adv. Energy Mater., 2023, 13(31): 2301396.
[70]
Yao Y X, Chen X, Yan C, Zhang X Q, Cai W L, Huang J Q, Zhang Q. Angewandte Chemie Int. Ed., 2021, 60(8): 4090.
[71]
Sun C C, Ji X, Weng S T, Li R H, Huang X T, Zhu C N, Xiao X Z, Deng T, Fan L W, Chen L X, Wang X F, Wang C S, Fan X L. Adv. Mater., 2022, 34(43): 2206020.
[72]
Lei S, Zeng Z Q, Liu M C, Zhang H, Cheng S J, Xie J. Nano Energy, 2022, 98: 107265.

Funding

Jilin Province Science and Technology Development Plan Project(YDZJ202301ZYTS293)
Jilin Province Science and Technology Development Plan Project(20210101065JC)
National Natural Science Foundation of China(51902006)
China Scholarship Council(202108220125)
Science and Technology Innovative Development Program of Jilin City(20210103112)
PDF(5057 KB)

Accesses

Citation

Detail

Sections
Recommended

/