Photocatalytic Removal of Antibiotics from Water

Jiangbo Yu, Jing Yu, Jie Liu, Zhanchao Wu, Shaoping Kuang

Prog Chem ›› 2024, Vol. 36 ›› Issue (1) : 95-105.

PDF(3502 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(3502 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (1) : 95-105. DOI: 10.7536/PC230525
Review

Photocatalytic Removal of Antibiotics from Water

Author information +
History +

Abstract

With the widespread use of antibiotics, the problem of water pollution caused by antibiotics is becoming increasingly serious. Currently, technologies for removing antibiotic pollutants from water include physical adsorption, flocculation, and chemical oxidation. However, these processes often leave a large amount of chemical reagents and difficult-to-dispose sediment in water, making post-treatment more difficult. Photocatalytic technology uses photocatalytic materials to decompose antibiotics under light, ultimately forming non-toxic CO2 and H2O. Photocatalytic degradation of antibiotics has the advantages of low cost, high efficiency and free secondary pollution. In this paper, the research progress of several commonly used photocatalytic materials for degrading antibiotics is reviewed, and their future researches and applications are also prospected.

Contents

1 Introduction

2 the impact of antibiotics in wastewater on The environment and human health

3 Principles of photocatalytic degradation of antibiotics

4 Commonly used photocatalytic materials for antibiotic degradation

4.1 Metal oxide based photocatalyst

4.2 Bi-based photocatalysts

4.3 Photocatalysts based on metal organic frameworks(MOFs)

4.4 Graphite like g-C3N4photocatalyst

5 Photocatalytic degradation of antibiotics

5.1 Photocatalytic degradation of TC

5.2 Photocatalytic degradation of CIP

6 Conclusion and outlook

Key words

photocatalyst / antibiotic / degradation / electronic energy band structure

Cite this article

Download Citations
Jiangbo Yu , Jing Yu , Jie Liu , et al . Photocatalytic Removal of Antibiotics from Water[J]. Progress in Chemistry. 2024, 36(1): 95-105 https://doi.org/10.7536/PC230525

References

[1]
Chen Z L, Guo J S, Jiang Y X, Shao Y. Environ. Sci. Eur., 2021, 33(1): 1.
[2]
Akerdi A G, Bahrami S H. J. Environ. Chem. Eng., 2019, 7(5): 103283.
[3]
de Souza D I, Dottein E M, Giacobbo A, Siqueira Rodrigues M A, de Pinho M N, Bernardes A M. J. Environ. Chem. Eng., 2018, 6(5): 6147.
[4]
Jaria G, Lourenço M A O, Silva C P, Ferreira P, Otero M, Calisto V, Esteves V I. J. Mol. Liq., 2020, 299: 112098.
[5]
Wang H, Wu Y, Feng M B, Tu W G, Xiao T, Xiong T, Ang H X, Yuan X Z, Chew J W. Water Res., 2018, 144: 215.
[6]
Zhang S Q, Hu G H, Chen M X, Li B, Dai W L, Deng F, Yang L X, Zou J P, Luo S L. Appl. Catal. B Environ., 2023, 330: 122584.
[7]
Chen Z H, Li S S, Peng Y N, Hu C. Catal. Sci. Technol., 2020, 10(16): 5470.
[8]
Shao X L, Wang K, Peng L J, Li K, Wen H Z, Le X Y, Wu X H, Wang G H. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 652: 129846.
[9]
Wei Z D, Liu J Y, Fang W J, Xu M Q, Qin Z, Jiang Z, Shangguan W F. Chem. Eng. J., 2019, 358: 944.
[10]
Wu Y Y, Li Y Q, Hu H J, Zeng G S, Li C H. ACS EST Eng., 2021, 1(3): 603.
[11]
Arun J, Shriniti V, Shyam S, Priyadharsini P, Gopinath K P, Sivaramakrishnan R, Thuy Lan Chi N, Pugazhendhi A. Fuel, 2023, 340: 127471.
[12]
Li L W, Feng H G, Dong Z B, Yang T T, Xue S L. J. Colloid Interface Sci., 2023, 649: 10.
[13]
Wei Z D, Liu J Y, Shangguan W F. Chin. J. Catal., 2020, 41(10): 1440.
[14]
Velempini T, Prabakaran E, Pillay K. Mater. Today Chem., 2021, 19: 100380.
[15]
Kovalakova P, Cizmas L, McDonald T J, Marsalek B, Feng M B, Sharma V K. Chemosphere, 2020, 251: 126351.
[16]
Kühne M, Hamscher G, Körner U, Schedl D, Wenzel S. Food Chem., 2001, 75(4): 423.
[17]
Romeiro A, Freitas D, Emília Azenha M, Canle M, Burrows H D. Photochem. Photobiol. Sci., 2017, 16(6): 935.
[18]
Chen X Y, Yao J J, Xia B, Gan J Y, Gao N Y, Zhang Z. J. Hazard. Mater., 2020, 383: 121220.
[19]
Djurišić A B, He Y L, Ng A M C. APL Mater., 2020, 8(3): 030903.
[20]
Soni V, Khosla A, Singh P, Nguyen V H, Van Le Q, Selvasembian R, Hussain C M, Thakur S, Raizada P. J. Environ. Manag., 2022, 308: 114617.
[21]
Haque F, Daeneke T, Kalantar-zadeh K, Ou J Z. Nano Micro Lett., 2018, 10(2): 1.
[22]
Do T C M V, Nguyen D Q, Nguyen K T, Le P H. Materials, 2019, 12(15): 2434.
[23]
Du J G, Ma S L, Yan Y H, Li K, Zhao F Y, Zhou J G. Colloids Surf. A Physicochem. Eng. Aspects, 2019, 572: 237.
[24]
Li W L, Li B R, Meng M J, Cui Y H, Wu Y L, Zhang Y L, Dong H J, Feng Y H. Appl. Surf. Sci., 2019, 487: 1008.
[25]
Lan N T, Anh V H, An H D, Hung N P, Nhiem D N, Van Thang B, Lieu P K, Khieu D Q. J. Nanomater., 2020, 2020: 1.
[26]
Serrà A, Zhang Y, Sepúlveda B, Gómez E, Nogués J, Michler J, Philippe L. Appl. Catal. B Environ., 2019, 248: 129.
[27]
Mirzaeifard Z, Shariatinia Z, Jourshabani M, Rezaei Darvishi S M. Ind. Eng. Chem. Res., 2020, 59(36): 15894.
[28]
Mardikar S P, Kulkarni S, Adhyapak P V. J. Environ. Chem. Eng., 2020, 8(2): 102788.
[29]
Semeraro P, Bettini S, Sawalha S, Pal S, Licciulli A, Marzo F, Lovergine N, Valli L, Giancane G. Nanomaterials, 2020, 10(8): 1458.
[30]
Molina Higgins M C, Hall H, Rojas J V. J. Photochem. Photobiol. A Chem., 2021, 409: 113138.
[31]
Rong R C, Wang L M. J. Alloys Compd., 2021, 850: 156742.
[32]
Shurbaji S, Huong P T, Altahtamouni T M. Catalysts, 2021, 11(4): 437.
[33]
Yang Y R, Qiu M, Chen F Y, Qi Q, Yan G M, Liu L, Liu Y F. Appl. Surf. Sci., 2021, 541: 148415.
[34]
Qiao D S, Qu X, Chen X Y, Sun B J, Ding W X, Chen C T, Peng X H, Sun D P. Appl. Surf. Sci., 2023, 619: 156630.
[35]
Chen P, Zhang Q X, Zheng X S, Tan C W, Zhuo M H, Chen T S, Wang F L, Liu H J, Liu Y, Feng Y P, Lv W Y, Liu G G. J. Hazard. Mater., 2020, 384: 121443.
[36]
Fang W J, Shangguan W F. Int. J. Hydrog. Energy, 2019, 44(2): 895.
[37]
Sivakumar R, Lee N Y. Chemosphere, 2022, 297: 134227.
[38]
Huang C, Chen L L, Li H P, Mu Y G, Yang Z G. RSC Adv., 2019, 9(48): 27768.
[39]
Ganose A M, Cuff M, Butler K T, Walsh A, Scanlon D O. Chem. Mater., 2016, 28(7): 1980.
[40]
Kandi D, Behera A, Sahoo S, Parida K. Sep. Purif. Technol., 2020, 253: 117523.
[41]
Jia Z H, Li T, Zheng Z F, Zhang J D, Liu J X, Li R, Wang Y W, Zhang X C, Wang Y F, Fan C M. Chem. Eng. J., 2020, 380: 122422.
[42]
Fang W L, Wang L, Meng X C, Li C H. J. Alloys Compd., 2023, 947: 169606.
[43]
Du C Y, Zhang Z, Yu G L, Wu H P, Chen H, Zhou L, Zhang Y, Su Y H, Tan S Y, Yang L, Song J H, Wang S T. Chemosphere, 2021, 272: 129501.
[44]
Zhang H, Sun R, Li D C, Dou J M. Chin. J. Struc. Chem. 2022, 41, 2211071.
[45]
Zhang J W, Xiang S, Wu P, Wang D Q, Lu S Y, Wang S L, Gong F J, Wei X Q, Ye X S, Ding P. Sci. Total Environ., 2022, 811: 152351.
[46]
Gao Y X, Lu J, Xia J, Yu G. ACS Appl. Mater. Interfaces, 2020, 12(11): 12706.
[47]
Liu N N, Shang Q G, Gao K, Cheng Q R, Pan Z Q. New J. Chem., 2020, 44(16): 6384.
[48]
Chen D D, Yi X H, Zhao C, Fu H F, Wang P, Wang C C. Chemosphere, 2020, 245: 125659.
[49]
Abazari R, Morsali A, Dubal D P. Inorg. Chem. Front., 2020, 7(12): 2287.
[50]
Askari N, Beheshti M, Mowla D, Farhadian M. Chemosphere, 2020, 251: 126453.
[51]
Du C Y, Zhang Z, Yu G L, Wu H P, Chen H, Zhou L, Zhang Y, Su Y H, Tan S Y, Yang L, Song J H, Wang S T. Chemosphere, 2021, 272: 129501.
[52]
Hariganesh S, Vadivel S, Maruthamani D, Kumaravel M, Paul B, Balasubramanian N, Vijayaraghavan T. Appl. Organomet. Chem., 2020, 34(2): e5365.
[53]
Li S J, Cui J N, Wu X, Zhang X, Hu Q, Hou X H. J. Hazard. Mater., 2019, 373: 408.
[54]
Jiang R R, Lu G H, Zhou R R, Yang H H, Yan Z H, Wu D H, Liu J C, Nkoom M. J. Alloys Compd., 2020, 820: 153166.
[55]
Alaghmandfard A, Ghandi K. Nanomaterials, 2022, 12(2): 294.
[56]
Liu T, Li Y, Sun H, Zhang M, Xia Z, Yang Q. Chin. J. Struc. Chem. 2022, 41:2206055.
[57]
Yang C, Yang J, Liu S S, Zhao M X, Duan X, Wu H L, Liu L, Liu W Z, Li J L, Ren S, Liu Q C. J. Environ. Manag., 2023, 335: 117608.
[58]
Wang H J, Zhang J, Wang P, Yin L L, Tian Y, Li J J. Chinese Chem. Lett., 2020, 31:2789.
[59]
Luo S H, Zhang C, Almatrafi E, Yan M, Liu Y, Fu Y K, Wang Z W, Li L, Zhou C Y, Xu P, Liu Z F, Zeng G M. Appl. Mater. Today, 2021, 24: 101118.
[60]
Viet N M, Trung D Q, Giang B L, Le Minh Tri N, Thao P, Pham T H, Kamand F Z, Al Tahtamouni T M. J. Water Process. Eng., 2019, 32: 100954.
[61]
Pattanayak D S, Pal D, Mishra J, Thakur C. Environ. Sci. Pollut. Res., 2023, 30(10): 25546.
[62]
Zhang R, Jiang J C, Zeng K L. Inorg. Chem. Commun., 2022, 140: 109418.
[63]
Xu L Y, Dai R, Yang J, Yan J F, Zhang Y Y, Dai Y, Liao C G, Zhang Z Y, Zhao W, Lei X Y, Zhang F C, Zhang H. J. Alloys Compd., 2023, 936: 168163.
[64]
Zhang H, Tang G G, Wan X, Xu J, Tang H. Appl. Surf. Sci., 2020, 530: 147234.
[65]
Abdurahman M H, Abdullah A Z, Shoparwe N F. Chem. Eng. J., 2021, 413: 127412.
[66]
Chopra I, Roberts M. Microbiol. Mol. Biol. Rev., 2001, 65(2): 232.
[67]
Tettey M, Sereboe L, Edwin F, Frimpong-Boateng K. Ghana Med J, 2005, 39, 128.
[68]
Daghrir R, Drogui P. Environ. Chem. Lett., 2013, 11(3): 209.
[69]
Wang P H, Yap P S, Lim T T. Appl. Catal. A Gen., 2011, 399(1/2): 252.
[70]
Chen F, Yang Q, Sun J, Yao F B, Wang S N, Wang Y L, Wang X L, Li X M, Niu C G, Wang D B, Zeng G M. ACS Appl. Mater. Interfaces, 2016, 8(48): 32887.
[71]
Wang W, Fang J J, Shao S F, Lai M, Lu C H. Appl. Catal. B Environ., 2017, 217: 57.
[72]
Jiang H L, Wang Q, Chen P H, Zheng H T, Shi J W, Shu H Y, Liu Y B. J. Clean. Prod., 2022, 339: 130771.
[73]
Malakootian M, Nasiri A, Amiri Gharaghani M. Chem. Eng. Commun., 2020, 207(1): 56.
[74]
Campoli-Richards D M, Monk J P, Price A, Benfield P, Todd P A, Ward A. Drugs, 1988, 35(4): 373.
[75]
Fief C A, Hoang K G, Phipps S D, Wallace J L, Deweese J E. ACS Omega, 2019, 4(2): 4049.
[76]
Yu X J, Zhang J, Zhang J, Niu J F, Zhao J, Wei Y C, Yao B H. Chem. Eng. J., 2019, 374: 316.
[77]
Pattnaik S P, Behera A, Martha S, Acharya R, Parida K. J. Mater. Sci., 2019, 54(7): 5726.

Funding

Major Scientific and Technological Innovation Project of Shandong Province(2021CXGC011206)
PDF(3502 KB)

Accesses

Citation

Detail

Sections
Recommended

/