Perovskite-Based Near-Infrared Photodetectors

Wenhuan Gao, Jike Ding, Quanxing Ma, Yuqing Su, Hongwei Song, Cong Chen

Prog Chem ›› 2024, Vol. 36 ›› Issue (2) : 187-203.

PDF(4756 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4756 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (2) : 187-203. DOI: 10.7536/PC230526
20

Perovskite-Based Near-Infrared Photodetectors

Author information +
History +

Abstract

In recent years, organo-metal halide perovskites materials with ABX3 crystal structure have shown promising application prospects in the field of photoelectric detection due to their optical and electrical properties such as adjustable bandgap engineering, high absorption coefficient and long carrier transmission distance. Especially, the hybrid perovskite prepared by pure Sn or Sn/Pb mixed cations have excellent near-infrared photoelectroresponse in the range of 760~1050 nm, showing many advantages such as high sensitivity, low dark current and high detection rate. To further broaden the near-infrared and infrared response wavelength range of perovskite, the researchers explored combining organic materials, crystalline silicon/germanium, Ⅲ-Ⅴ compounds, Ⅳ-Ⅵ compounds, upconversion fluorescent materials as complementary light absorption layers with perovskite to prepare heterostructures to construct wide-spectrum response near-infrared photodetectors. Based on the above research, this paper summarizes the current effective ways to broaden the spectrum range of perovskite photodetectors. At the same time, the future development prospect of perovskite material near infrared photodetector is prospected.

Contents

1 Introduction

2 Basic indicators of photodetectors

2.1 Device structure and working principle of photodetectors

2.2 Performance parameters of photodetectors

2.3 Strategy of broadening the spectrum response range of perovskites

3 Pb perovskite for near-infrared photodetectors

3.1 Polycrystalline perovskite materials

3.2 Single crystal perovskite materials

4 Narrow band gap Sn and Sn/Pb Mixed Perovskite- Based near-infrared photodetectors

4.1 Sn-based perovskite near-infrared photodetectors

4.2 Sn/Pb mixed perovskite near-infrared photodetectors

5 Perovskite/inorganic heterojunction near-infrared photodetectors

5.1 Silicon and other classic semiconductors

5.2 Graphene

5.3 Transition metal dichalcogenides

5.4 Ⅲ-Ⅴ compounds semiconductors

5.5 Ⅳ-Ⅳ compounds semiconductors

6 Perovskite/organic heterojunction near-infrared photodetectors

7 Perovskite/upconversion material near-infrared photodetectors

8 Application of near-infrared photodetectors

9 Conclusion and outlook

Key words

optical device / perovskite / near-infrared photodetectors / narrow-bandgap materials

Cite this article

Download Citations
Wenhuan Gao , Jike Ding , Quanxing Ma , et al . Perovskite-Based Near-Infrared Photodetectors[J]. Progress in Chemistry. 2024, 36(2): 187-203 https://doi.org/10.7536/PC230526

References

[1]
Pawbake A S, Waykar R G, Late D J, Jadkar S R. ACS Appl. Mater. Interfaces, 2016, 8(5): 3359.
[2]
Mueller T, Xia F N, Avouris P. Nat. Photonics, 2010, 4(5): 297.
[3]
Jie H N, Xue Y S, Ming W Z, Shen L S, Bai X J, Bo L J. Sci. Rep., 2014, 4(1): 5209.
[4]
Fu B B, Sun L J, Liu L, Ji D Y, Zhang X T, Yang F X, Hu W P. Sci. China Mater., 2022, 65(10): 2779.
[5]
Andrea P, Ansuman B, David K, Ian P. Lab Chip, 2008, 8(5): 794.
[6]
Park J, Lee C, Kim T, Kim H, Kim Y. Adv. Electron. Mater., 2021, 7(1): 2000932.
[7]
Young K J, Wook L J, Suk J H, Hyunjung S, Gyu P N. Chem. Rev., 2020, 120(15): 7867.
[8]
Hui D, Kun Y X, Dong D D, Bing L, Dun Y, Jie Y S, Ke Q K, Bing C Y, Jiang T, Sheng S H. Nano Lett., 2015, 15(12): 7963.
[9]
Long G Y, Chao L, Hideyuki T, Eiichi N. J. Phys. Chem. Lett., 2015, 6(3): 535.
[10]
Feng L, Chun M, Hong W, Jin H W, Li Y W, D S A, Tom W. Nat. Commun., 2015, 6(1): 8238.
[11]
National Renewable Energy Laboratory, (2023). https://www.nrel.gov/pv/interactive-cell-efficiency.html.
[12]
Chen Z H, Li H, Tang Y B, Huang X, Ho D, Lee C S. Mater. Res. Express, 2014, 1(1): 015034.
[13]
Hu X, Zhang X D, Liang L, Bao J, Li S, Yang W L, Xie Y. Adv. Funct. Mater., 2014, 24(46): 7373.
[14]
Wang W B, Zhao D W, Zhang F J, Li L D, Du M D, Wang C L, Yu Y, Huang Q Q, Zhang M, Li L L. Adv. Funct. Mater., 2017, 27(42): 1703953.
[15]
Wu G, Fu R L, Chen J H, Yang W T, Ren J, Guo X K, Ni Z Y, Pi X D, Li C Z, Li H Y, Chen H Z. Small, 2018, 14(39): 1802349.
[16]
P A P, Peter V, Peter D H, Marianna P, Guy L, Jeroen D C, Joris V C. Opt. Express, 2015, 23(7): 9369.
[17]
Alwadai N, Haque M A, Mitra S, Flemban T, Pak Y, Wu T, Roqan I. ACS Appl. Mater. Interfaces, 2017, 9(43): 37832.
[18]
Xie C, You P, Liu Z K, Li L, Yan F. Light. Sci. Appl., 2017, 6(8): e17023.
[19]
Perumal Veeramalai C, Yang S Y, Zhi R N, Sulaman M, Saleem M I, Cui Y Y, Tang Y, Jiang Y R, Tang L B, Zou B S. Adv. Opt. Mater., 2020, 8(15): 2000215.
[20]
Zhao Y C, Tan H R, Yuan H F, Yang Z Y, Fan J Z, Kim J H, Voznyy O, Gong X W, Quan L N, Tan C S, Hofkens J, Yu D P, Zhao Q, Sargent E H. Nat. Commun., 2018, 9: 1607.
[21]
Lin Q Q, Armin A, Burn P L, Meredith P. Laser Photonics Rev., 2016, 10(6): 1047.
[22]
Zhang Y X, Liu Y C, Yang Z, Liu S F. J. Energy Chem., 2018, 27(3): 722.
[23]
Yu J, Zheng J, Chen H Y, Tian N, Li L, Qu Y M, Huang Y T, Luo Y X, Tan W Z. J. Mater. Chem. C, 2022, 10(1): 274.
[24]
Xi Y Y, Wang X C, Ji T, Li G H, Shi L L, Liu Y C, Wang W Y, Ma J Q, Liu S Z, Hao Y Y. Adv. Opt. Mater., 2023, 2202423.
[25]
Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G. J. Am. Chem. Soc., 2012, 134(20): 8579.
[26]
Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G. Nat. Photonics, 2014, 8(6): 489.
[27]
Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N. Adv. Mater., 2014, 26(41): 7122.
[28]
Ma L, Hao F, Stoumpos C C, Phelan B T, Wasielewski M R, Kanatzidis M G. J. Am. Chem. Soc., 2016, 138(44): 14750.
[29]
Lee S J, Shin S S, Im J, Ahn T K, Noh J H, Jeon N J, Seok S I, Seo J. ACS Energy Lett., 2018, 3(1): 46.
[30]
Waleed A, Tavakoli M M, Gu L L, Wang Z Y, Zhang D Q, Manikandan A, Zhang Q P, Zhang R J, Chueh Y L, Fan Z Y. Nano Lett., 2017, 17(1): 523.
[31]
Han M M, Sun J M, Peng M, Han N, Chen Z H, Liu D, Guo Y N, Zhao S, Shan C X, Xu T, Hao X T, Hu W D, Yang Z X. J. Phys. Chem. C, 2019, 123(28): 17566.
[32]
Cao F R, Tian W, Wang M, Wang M, Li L. InfoMat, 2020, 2(3): 577.
[33]
Tai Q D, Guo X Y, Tang G Q, You P, Ng T W, Shen D, Cao J P, Liu C K, Wang N X, Zhu Y, Lee C S, Yan F. Angewandte Chemie Int. Ed., 2019, 58(3): 806.
[34]
Liu C K, Tai Q D, Wang N X, Tang G Q, Loi H L, Yan F. Adv. Sci., 2019, 6(17): 1900751.
[35]
Liu C K, Tai Q D, Wang N X, Tang G Q, Hu Z, Yan F. ACS Appl. Mater. Interfaces, 2020, 12(16): 18769.
[36]
Yuhei O, Atsushi M, Syota T, Takahiro S, Naotaka F, Qing S, Taro T, Kenji Y, S P S, Tingli M, Shuzi H. J. Phys. Chem. Lett., 2014, 5(6): 1004.
[37]
Zhu H L, Choy W C H. Sol. RRL, 2018, 2(10): 1800146.
[38]
Zhu H L, Liang Z F, Huo Z B, Ng W K, Mao J, Wong K S, Yin W J, Choy W C H. Adv. Funct. Mater., 2018, 28(16): 1706068.
[39]
Zhu H L, Lin H, Song Z L, Wang Z S, Ye F, Zhang H, Yin W J, Yan Y F, Choy W C H. ACS Nano, 2019, 13(10): 11800.
[40]
Liu H, Zhu H L, Wang Z S, Wu X, Huang Z F, Huqe M R, Zapien J A, Lu X H, Choy W C H. Adv. Funct. Mater., 2021, 31(28): 2010532.
[41]
Zhao Y, Li C L, Jiang J Z, Wang B M, Shen L. Small, 2020, 16(26): 2001534.
[42]
Cao F, Chen J D, Yu D J, Wang S, Xu X B, Liu J X, Han Z Y, Huang B, Gu Y, Leong Choy K, Zeng H B. Adv. Mater., 2020, 32(6): 1905362.
[43]
Zhao R, Huang J Y, Liu M Y, Tan F R, Zhang P T, Chen Z, Yao X, Li S J. Nanotechnology, 2023, 34(21): 215702.
[44]
Xu X B, Chueh C C, Jing P F, Yang Z B, Shi X L, Zhao T, Lin L Y, Jen A K Y. Adv. Funct. Mater., 2017, 27(28): 1701053.
[45]
Morteza Najarian A, Vafaie M, Johnston A, Zhu T, Wei M Y, Saidaminov M I, Hou Y, Hoogland S, García de Arquer F P, Sargent E H. Nat. Electron., 2022, 5(8): 511.
[46]
Ma N N, Jiang J Z, Zhao Y, He L J, Ma Y, Wang H L, Zhang L L, Shan C X, Shen L, Hu W D. Nano Energy, 2021, 86: 106113.
[47]
He L J, Hu G J, Jiang J Z, Wei W, Xue X Z, Fan K, Huang H T, Shen L. Adv. Mater., 2023, 35(10): 2210016.
[48]
Liu F C, Liu K, Rafique S, Xu Z Y, Niu W Q, Li X G, Wang Y F, Deng L L, Wang J, Yue X F. Adv. Sci., 2023, 10(5): 2205879.
[49]
Liu H, Zhu L, Zhang H, He X J, Yan F, Wong K S, Choy W C H. ACS Energy Lett., 2023, 8(1): 577.
[50]
Jang W, Kim K, Kim B G, Nam J S, Jeon I, Wang D H. Adv. Funct. Mater., 2022, 32(51): 2270290.
[51]
Liu J X, Zou Y S, Huang B, Gu Y, Yang Y, Han Z Y, Zhang Y Z, Xu X B, Zeng H B. Nanoscale, 2020, 12(39): 20386.
[52]
Chang C Y, Wu K H, Chang C Y, Guo R F, Li G L, Wang C Y. Mol. Syst. Des. Eng., 2022, 7(9): 1073.
[53]
Sun Z H, Aigouy L, Chen Z Y. Nanoscale, 2016, 8(14): 7377.
[54]
I S M, Azimul H M, Maxime S, L A A, Namchul C, Ibrahim D, Ulrich B, Erkki A, Tom W, M B O. Adv. Mater., 2016, 28(37): 8144.
[55]
Geng X S, Wang F W, Tian H, Feng Q X, Zhang H N, Liag R R, Shen Y, Ju Z Y, Gou G Y, Deng N Q, Li Y T, Ren J, Xie D, Yang Y, Ren T L. ACS Nano, 2020, 14(3): 2860.
[56]
Zhang Z X, Xu C H, Zhu C Y, Tong X W, Fu C, Wang J, Cheng Y L, Luo L B. Sens. Actuat. A Phys., 2021, 332: 113176.
[57]
Cheng Y, Shi Z F, Yin S T, Li Y, Li S, Liang W Q, Wu D, Tian Y T, Li X J. Sol. Energy Mater. Sol. Cells, 2020, 204: 110230.
[58]
Asuo I M, Banerjee D, Pignolet A, Nechache R, Cloutier S G. Phys. Status Solidi RRL Rapid Res. Lett., 2021, 15(4): 2000537.
[59]
Liu J Q, Gao Y, Wu G A, Tong X W, Xie C, Luo L B, Liang L, Wu Y C. ACS Appl. Mater. Interfaces, 2018, 10(33): 27850.
[60]
Zhao F Y, Xu K, Luo X, Liang Y L, Peng Y Q, Lu F P. Adv. Opt. Mater., 2018, 6(1): 1700509.
[61]
Qu W, Weng S K, Zhang L P, Sun M, Liu B, Du W J, Zhang Y W. Appl. Phys. Express, 2020, 13(12): 121001.
[62]
Cao F R, Liao Q L, Deng K M, Chen L, Li L, Zhang Y. Nano Res., 2018, 11(3): 1722.
[63]
Lee Y, Kwon J, Hwang E, Ra C H, Yoo W J, Ahn J H, Park J H, Cho J H. Adv. Mater., 2015, 27(1): 41.
[64]
Wang Y S, Zhang Y P, Lu Y, Xu W D, Mu H R, Chen C Y, Qiao H, Song J C, Li S J, Sun B Q, Cheng Y B, Bao Q L. Adv. Opt. Mater., 2015, 3(10): 1303.
[65]
Spina M, Lehmann M, Náfrádi B, Bernard L, Bonvin E, Gaál R, Magrez A, Forró L, Horváth E. Small, 2015, 11(37): 4824.
[66]
Qian L, Sun Y L, Wu M M, Xie D, Ding L M, Shi G Q. Adv. Mater., 2017, 29(22): 1606175.
[67]
Feng F, Wang T, Qiao J, Min C J, Yuan X C, Somekh M. ACS Appl. Mater. Interfaces, 2021, 13(51): 61496.
[68]
Zhang Z X, Zeng L H, Tong X W, Gao Y, Xie C, Tsang Y H, Luo L B, Wu Y C. J. Phys. Chem. Lett., 2018, 9(6): 1185.
[69]
Zeng L H, Chen Q M, Zhang Z X, Wu D, Yuan H Y, Li Y Y, Qarony W, Lau S P, Luo L B, Tsang Y H. Adv. Sci., 2019, 6(19): 1901134.
[70]
Fang C, Wang H Z, Shen Z X, Shen H Z, Wang S, Ma J Q, Wang J, Luo H M, Li D H. ACS Appl. Mater. Interfaces, 2019, 11(8): 8419.
[71]
Kang D H, Pae S R, Shim J, Yoo G, Jeon J, Leem J W, Yu J S, Lee S, Shin B, Park J H. Adv. Mater., 2016, 28(35): 7799.
[72]
Guo H, Tong Y, Fan H B, Ye Q, Zhang J, Wang H Y, Cao F R, Li L, Wang H Q. Sci. China Phys. Mech. Astron., 2022, 65(7): 274204.
[73]
Zumeit A, Dahiya A S, Christou A, Mukherjee R, Dahiya R. Adv. Mater. Technol., 2022, 7(12): 2200772.
[74]
Hou X B, Hong X T, Lin F Y, Cui J Z, Dai Q, Tian Q L, Meng B H, Liu Y J, Tang J L, Li K X, Liao L, Wei Z P. Photon. Res., 2023, 11(4): 541.
[75]
Saran R, Curry R J. Nat. Photonics, 2016, 10(2): 81.
[76]
Steigerwald M L, Alivisatos A P, Gibson J M, Harris T D, Kortan R, Muller A J, Thayer A M, Duncan T M, Douglass D C, Brus L E. J. Am. Chem. Soc., 1988, 110(10): 3046.
[77]
Zhang J B, Crisp R W, Gao J B, Kroupa D M, Beard M C, Luther J M. J. Phys. Chem. Lett., 2015, 6(10): 1830.
[78]
McDonald S A, Konstantatos G, Zhang S G, Cyr P W, Klem E J D, Levina L, Sargent E H. Nat. Mater., 2005, 4(2): 138.
[79]
García de Arquer F P, Gong X W, Sabatini R P, Liu M, Kim G H, Sutherland B R, Voznyy O, Xu J X, Pang Y, Hoogland S, Sinton D, Sargent E. Nat. Commun., 2017, 8: 14757.
[80]
Liu C, Wang K, Du P C, Wang E M, Gong X, Heeger A J. Nanoscale, 2015, 7(39): 16460.
[81]
Zhang J Y, Xu J L, Chen T, Gao X, Wang S D. ACS Appl. Mater. Interfaces, 2019, 11(47): 44430.
[82]
Yu Y, Zhang Y T, Zhang Z, Zhang H T, Song X X, Cao M X, Che Y L, Dai H T, Yang J B, Wang J L, Zhang H, Yao J Q. J. Phys. Chem. Lett., 2017, 8(2): 445.
[83]
Zhao D, Huang J, Qin R H, Yang G J, Yu J S. Adv. Opt. Mater., 2018, 6(23): 1870090.
[84]
Pan W T, Tan M R, He Y H, Wei H T, Yang B. Nano Lett., 2022, 22(6): 2277.
[85]
Hao H Z, Jun Z F, Shi A Q, Miao Z, Ling M X, Xiao W J, Jian Z, Jian W. ACS Energy Lett., 2018, 3(3): 555.
[86]
Miao Z, Jun Z F, Shi A Q, Qian S Q, Bin W W, Ling M X, Jian Z, Hua T W. J. Mater. Chem. A, 2017, 5(7): 3589.
[87]
Dou L T, Yang Y, You J B, Hong Z R, Chang W H, Li G, Yang Y. Nat. Commun., 2014, 5: 5404.
[88]
Chen S, Teng C J, Zhang M, Li Y R, Xie D, Shi G Q. Adv. Mater., 2016, 28(28): 5969.
[89]
Shen L, Lin Y Z, Bao C X, Bai Y, Deng Y H, Wang M M, Li T, Lu Y F, Gruverman A, Li W W, Huang J S. Mater. Horiz., 2017, 4(2): 242.
[90]
Lin Q Q, Armin A, Lyons D M, Burn P L, Meredith P. Adv. Mater., 2015, 27(12): 2060.
[91]
Wang Y K, Yang D Z, Zhou X K, Ma D G, Vadim A, Ahamad T, Alshehri S M. Adv. Opt. Mater., 2017, 5(12): 1700213.
[92]
Wu G, Fu R L, Chen J H, Yang W T, Ren J, Guo X K, Ni Z Y, Pi X D, Li C Z, Li H Y, Chen H Z. Small, 2018, 14(39): 1802349.
[93]
Xu W Z, Guo Y K, Zhang X T, Zheng L Y, Zhu T, Zhao D H, Hu W P, Gong X. Adv. Funct. Mater., 2018, 28(7): 1705541.
[94]
Li C L, Ma Y, Xiao Y F, Shen L, Ding L M. InfoMat, 2020, 2(6): 1247.
[95]
I S M, Valerio A, Riccardo C, L A A, Wei P, Ibrahim D, Jian Y M, Sjoerd H, H S E, M B O. Nat. Commun., 2015, 6(Nov.): 8724.
[96]
Zhang X H, Yang S Z, Zhou H, Liang J W, Liu H W, Xia H, Zhu X L, Jiang Y, Zhang Q L, Hu W, Zhang X J, Liu H J, Hu W D, Wang X, Pan A L. Adv. Mater., 2017, 29(21): 1604431.
[97]
Cong H, Chu X B, Wan F S, Chu Z M, Wang X Y, Ma Y, Jiang J Z, Shen L, You J B, Xue C L. Small Methods, 2021, 5(8): 2100517.
[98]
Ka I, Gerlein L F, Asuo I M, Nechache R, Cloutier S G. Nanoscale, 2018, 10(19): 9044.
[99]
Li C L, Wang H L, Wang F, Li T F, Xu M J, Wang H, Wang Z, Zhan X W, Hu W D, Shen L. Light. Sci. Appl., 2020, 9: 31.

Funding

National Natural Science Foundation of China(62004058)
Natural Science Foundation of Hebei Province(F20202022)
PDF(4756 KB)

Accesses

Citation

Detail

Sections
Recommended

/