Design and Structure Regulation of VOCs Catalytic Oxidation Catalysts

Wenhao Yang, Dongyue Zhao, Haitao Song, Junhua Li

Prog Chem ›› 2024, Vol. 36 ›› Issue (1) : 27-47.

PDF(41160 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(41160 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (1) : 27-47. DOI: 10.7536/PC230604
Review

Design and Structure Regulation of VOCs Catalytic Oxidation Catalysts

Author information +
History +

Abstract

In recent years, with the improvement of the air quality in China, traditional pollutants such as NOx and SO2 have been effectively controlled. The emission control of volatile organic compounds (VOCs) has gradually become a key to further alleviating the regional composite air pollution so far. Catalytic oxidation is one of the most promising VOCs emission reduction technologies due to its high treatment efficiency, low energy consumption, and wide applicability. The development of high-performance catalysts is crucial for this technology. The design and structural regulation of catalysts associated with mechanism study is currently a research hotspot. This paper first outlines the catalytic oxidation mechanism of VOCs. Secondly, the research progress on the structural regulation of non-noble metal catalysts is reviewed from the perspectives of single transition metal oxides, mixed metal oxides, composite metal oxides, and interface structure regulation. Based on the dispersion state, the size effect and support effect of noble metal nanoparticles/clusters in noble metal catalysts are summarized. The regulation strategies based on the metal-support interaction for the emerging single-atom catalysts are also discussed. Finally, this paper provides a summary and prospects for future research trends. We believe that based on deeply clarifying the structure-activity relationship, developing simple and refined structure regulation methods of catalysts and adapting to actual operating conditions and industrial scale-up is the focus of future research.

Contents

1 Introduction

2 VOCs catalytic oxidation mechanisms

3 Structure regulation of non-noble metal catalysts

3.1 Single transition metal oxides

3.2 Mixed transition metal oxides

3.3 Composite transition metal oxides

3.4 Interface structure regulation

4 Regulation of metal dispersion state in noble metal catalysts

4.1 Noble metal nanoparticle/cluster catalysts

4.2 Noble metal single-atom catalysts

5 Conclusion and outlook

Key words

volatile organic compounds(VOCs) / catalytic oxidation / structure regulation / noble metal dispersion state regulation / reaction mechanism

Cite this article

Download Citations
Wenhao Yang , Dongyue Zhao , Haitao Song , et al. Design and Structure Regulation of VOCs Catalytic Oxidation Catalysts[J]. Progress in Chemistry. 2024, 36(1): 27-47 https://doi.org/10.7536/PC230604

References

[1]
He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z P. Chem. Rev., 2019, 119(7): 4471.
[2]
Wu P, Jin X J, Qiu Y C, Ye D Q. Environ. Sci. Technol., 2021, 55(8): 4268.
[3]
Mozaffar A, Zhang Y L, Fan M Y, Cao F, Lin Y C. Atmos. Res., 2020, 240: 104923.
[4]
Ministry of Ecology and Environment of the People's Republic of China. 2021 China Ecological Environment Status Bulletin[EB/OL]. (2022-05-27)[2023-05-17]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202205/P020220608338202870777.pdf.
(中华人民共和国生态环境部. 2021中国生态环境状况公报[EB/OL]. (2022-05-27) [2023-05-17]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202205/P020220608338202870777.pdf.)
[5]
Jin X M, Holloway T. J. Geophys. Res. Atmos., 2015, 120(14): 7229.
[6]
Li J H, Yao Q, Zhu T Y. Deep Treatment Technology and Engineering Application of Multiple Pollutants in Industrial Flue Gas. Beijing: Science Press, 2019.
(李俊华, 姚群, 朱廷钰. 工业烟气多污染物深度治理技术及工程应用. 北京: 科学出版社, 2019. ).
[7]
Ye D Q. Emission and control of industrial volatile organic compounds. Beijing: Science Press, 2017.
(叶代启. 工业挥发性有机物的排放与控制. 北京: 科学出版社, 2017.).
[8]
Guo Y L, Wen M C, Li G Y, An T C. Appl. Catal. B Environ., 2021, 281: 119447.
[9]
Behar S, Gómez-Mendoza N A, Gómez-García M Á, Świerczyński D, Quignard F, Tanchoux N. Appl. Catal. A Gen., 2015, 504: 203.
[10]
Genuino H C, Dharmarathna S, Njagi E C, Mei M C, Suib S L. J. Phys. Chem. C, 2012, 116(22): 12066.
[11]
Tseng T K, Chu H. Sci. Total Environ., 2001, 275(1-3): 83.
[12]
Hosseini M, Barakat T, Cousin R, Aboukaïs A, Su B L, De Weireld G, Siffert S. Appl. Catal. B Environ., 2012, 111-112: 218.
[13]
Banu I, Bercaru G, Bozga G, Danciu T D. Chem. Eng. Technol., 2016, 39(4): 758.
[14]
Zabihi M, Khorasheh F, Shayegan J. React. Kinet. Mech. Catal., 2015, 114(2): 611.
[15]
Banu I, Manta C M, Bercaru G, Bozga G. Chem. Eng. Res. Des., 2015, 102: 399.
[16]
Wang Q Y, Li Y X, Serrano-Lotina A, Han W, Portela R, Wang R X, Bañares M A, Yeung K L. J. Am. Chem. Soc., 2021, 143(1): 196.
[17]
Zhang Z X, Jiang Z, Shangguan W F. Catal. Today, 2016, 264: 270.
[18]
Yang C T, Miao G, Pi Y H, Xia Q B, Wu J L, Li Z, Xiao J. Chem. Eng. J., 2019, 370: 1128.
[19]
Sun H, Liu Z G, Chen S, Quan X. Chem. Eng. J., 2015, 270: 58.
[20]
Ding J Y, Yang Y J, Liu J, Wang Z. Chemosphere, 2020, 248: 125980.
[21]
Zhang T, Lang X Y, Dong A Q, Wan X, Gao S, Wang L, Wang L X, Wang W C. ACS Catal., 2020, 10(13): 7269.
[22]
Kim S C, Shim W G. Appl. Catal. B Environ., 2010, 98(3-4): 180.
[23]
Feng Q, Kanoh H, Ooi K. J. Mater. Chem., 1999, 9(2): 319.
[24]
Yang R J, Fan Y Y, Ye R Q, Tang Y X, Cao X H, Yin Z Y, Zeng Z Y. Adv. Mater., 2021, 33(9): 2004862.
[25]
Liang S H, Bulgan F T G, Zong R L, Zhu Y F. J. Phys. Chem. C, 2008, 112(14): 5307.
[26]
Zhang J H, Li Y B, Wang L, Zhang C B, He H. Catal. Sci. Technol., 2015, 5(4): 2305.
[27]
Chen B B, Wu B, Yu L M, Crocker M, Shi C. ACS Catal., 2020, 10(11): 6176.
[28]
Yang W H, Su Z A, Xu Z H, Yang W N, Peng Y, Li J H. Appl. Catal. B Environ., 2020, 260: 118150.
[29]
Yang R J, Guo Z J, Cai L X, Zhu R S, Fan Y Y, Zhang Y F, Han P P, Zhang W J, Zhu X G, Zhao Q T, Zhu Z Y, Chan C K, Zeng Z Y. Small, 2021, 17(50): 2103052.
[30]
Rong S P, Zhang P Y, Liu F, Yang Y J. ACS Catal., 2018, 8(4): 3435.
[31]
Feng C, Xiong G Y, Li Y P, Gao Q Q, Pan Y, Fei Z Y, Li Y P, Lu Y K, Liu C G, Liu Y Q. Crystengcomm, 2021, 23(43): 7602.
[32]
Jian Y F, Yu T T, Jiang Z Y, Yu Y K, Douthwaite M, Liu J Y, Albilali R, He C. ACS Appl. Mater. Interfaces, 2019, 11(12): 11369.
[33]
Yao J X, Shi H, Sun D K, Lu H Q, Hou B, Jia L T, Xiao Y, Li D B. Chemcatchem, 2019, 11(22): 5570.
[34]
Jian Y F, Tian M J, He C, Xiong J C, Jiang Z Y, Jin H, Zheng L R, Albilali R, Shi J W. Appl. Catal. B Environ., 2021, 283: 119657.
[35]
Wang X Y, Liu Y, Zhang T H, Luo Y J, Lan Z X, Zhang K, Zuo J C, Jiang L L, Wang R H. ACS Catal., 2017, 7(3): 1626.
[36]
Nolan M, Parker S C, Watson G W. Surf. Sci., 2005, 595(1-3): 223.
[37]
Peng R S, Sun X B, Li S J, Chen L M, Fu M L, Wu J L, Ye D Q. Chem. Eng. J., 2016, 306: 1234.
[38]
Torrente-Murciano L, Gilbank A, Puertolas B, Garcia T, Solsona B, Chadwick D. Appl. Catal. B Environ., 2013, 132-133: 116.
[39]
Thenuwara A C, Shumlas S L, Attanayake N H, Aulin Y V, McKendry I G, Qiao Q, Zhu Y M, Borguet E, Zdilla M J, Strongin D R. ACS Catal., 2016, 6(11): 7739.
[40]
Liu J, Yu L, Hu E Y, Guiton B S, Yang X Q, Page K. Inorg. Chem., 2018, 57(12): 6873.
[41]
McKendry I G, Mohamad L J, Thenuwara A C, Marshall T, Borguet E, Strongin D R, Zdilla M J. ACS Energy Lett., 2018, 3(9): 2280.
[42]
Thenuwara A C, Cerkez E B, Shumlas S L, Attanayake N H, McKendry I G, Frazer L, Borguet E, Kang Q, Remsing R C, Klein M L, Zdilla M J, Strongin D R. Angew. Chem. Int. Ed., 2016, 55(35): 10381.
[43]
Wang Y, Liu K S, Wu J, Hu Z M, Huang L, Zhou J, Ishihara T, Guo L M. ACS Catal., 2020, 10(17): 10021.
[44]
Ni C L, Hou J T, Li L, Li Y Z, Wang M X, Yin H, Tan W F. Chemosphere, 2020, 250: 126211.
[45]
Li D Y, Li W H, Deng Y Z, Wu X F, Han N, Chen Y F. J. Phys. Chem. C, 2016, 120(19): 10275.
[46]
Sun M, Yu L, Ye F, Diao G Q, Yu Q, Hao Z F, Zheng Y Y, Yuan L X. Chem. Eng. J., 2013, 220: 320.
[47]
Wang Q Y, Yeung K L, Bañares M A. Catal. Today, 2020, 356: 141.
[48]
Carey J J, Nolan M. Appl. Catal. B Environ., 2016, 197: 324.
[49]
Wang J, Gong X Q. Appl. Surf. Sci., 2018, 428: 377.
[50]
He C, Xu B T, Shi J W, Qiao N L, Hao Z P, Zhao J L. Fuel Process. Technol., 2015, 130: 179.
[51]
Zhang X J, Zhao J G, Song Z X, Zhao H, Liu W, Ma Z A, Zhao M, Du H X. Chemistryselect, 2019, 4(30): 8902.
[52]
Solsona B, Sanchis R, Dejoz A, García T, Ruiz-Rodríguez L, López Nieto J, Cecilia J, Rodríguez-Castellón E. Catalysts, 2017, 7(12): 96.
[53]
Zeng Y Q, Haw K G, Wang Z G, Wang Y N, Zhang S L, Hongmanorom P, Zhong Q, Kawi S. J. Hazard. Mater., 2021, 404: 124088.
[54]
Gevers L E, Enakonda L R, Shahid A, Ould-Chikh S, Silva C I Q, Paalanen P P, Aguilar-Tapia A, Hazemann J L, Hedhili M N, Wen F, Ruiz-Martinez J. Nat. Commun., 2022, 13(1).
[55]
Liao Y N, Fu M L, Chen L M, Wu J L, Huang B C, Ye D Q. Catal. Today, 2013, 216: 220.
[56]
Venkataswamy P, Rao K N, Jampaiah D, Reddy B M. Appl. Catal. B Environ., 2015, 162: 122.
[57]
Wu H R, Ma S C, Song W Y, Hensen E J M. J. Phys. Chem. C, 2016, 120(24): 13071.
[58]
Chen J, Chen X, Chen X, Xu W J, Xu Z, Jia H P, Chen J. Appl. Catal. B Environ., 2018, 224: 825.
[59]
Liu J X, Zhao Z, Xu C M, Liu J. Chinese J. Catal., 2019, 40(10): 1438.
[60]
Gutiérrez-Ortiz J I, de Rivas B, López-Fonseca R, González-Velasco J R. Appl. Catal. B Environ., 2006, 65(3-4): 191.
[61]
Long G Y, Chen M X, Li Y J, Ding J F, Sun R Z, Zhou Y F, Huang X Y, Han G R, Zhao W R. Chem. Eng. J., 2019, 360: 964.
[62]
Li S D, Wang D D, Wu X F, Chen Y F. Chinese J. Catal., 2020, 41(4): 550.
[63]
Feng J T, He Y F, Liu Y N, Du Y Y, Li D Q. Chem. Soc. Rev., 2015, 44(15): 5291.
[64]
Aguilera D A, Perez A, Molina R, Moreno S. Appl. Catal. B Environ., 2011, 104(1-2): 144.
[65]
Mo S P, Li S D, Li J Q, Deng Y Z, Peng S P, Chen J Y, Chen Y F. Nanoscale, 2016, 8(34): 15763.
[66]
Jirátová K, Kovanda F, Ludvíková J, Balabánová J, Klempa J. Catal. Today, 2016, 277: 61.
[67]
Qian Q H, Asinger P A, Lee M J, Han G, Rodriguez K M, Lin S, Benedetti F M, Wu A X, Chi W S, Smith Z P. Chem. Rev., 2020, 120(16): 8161.
[68]
Zhang X D, Lv X T, Bi F K, Lu G, Wang Y X. Mol. Catal., 2020, 482: 110701.
[69]
Zhao J H, Tang Z C, Dong F, Zhang J Y. Mol. Catal., 2019, 463: 77.
[70]
Ma Y, Wang L, Ma J Z, Wang H H, Zhang C B, Deng H, He H. ACS Catal., 2021, 11(11): 6614.
[71]
Chen X, Chen X, Yu E Q, Cai S C, Jia H P, Chen J, Liang P. Chem. Eng. J., 2018, 344: 469.
[72]
Sun H, Yu X L, Ma X Y, Yang X Q, Lin M Y, Ge M F. Catal. Today, 2020, 355: 580.
[73]
Zheng Y F, Zhao Q, Shan C P, Lu S C, Su Y, Han R, Song C F, Ji N, Ma D G, Liu Q L. ACS Appl. Mater. Interfaces, 2020, 12(25): 28139.
[74]
Li Y X, Han W, Wang R X, Weng L T, Serrano-Lotina A, Bañares M A, Wang Q Y, Yeung K L. Appl. Catal. B Environ., 2020, 275: 119121.
[75]
Dong F, Han W G, Guo Y, Han W L, Tang Z C. Chem. Eng. J., 2021, 405: 126948.
[76]
Zhang Y Z, Zeng Z Q, Li Y F, Hou Y Q, Hu J L, Huang Z G. Fuel, 2021, 288: 119700.
[77]
Wang D, Yang Q L, Yang G P, Xiong S C, Li X S, Peng Y, Li J H, Crittenden J. Chem. Eng. J., 2020, 399: 125792.
[78]
Chen Y, Deng J, Yang B, Yan T T, Zhang J P, Shi L Y, Zhang D S. Chem. Commun., 2020, 56(48): 6539.
[79]
Faure B, Alphonse P. Appl. Catal. B Environ., 2016, 180: 715.
[80]
Liu L Z, Sun J T, Ding J D, Zhang Y, Sun T H, Jia J P. Inorg. Chem., 2019, 58(19): 13241.
[81]
Liang X L, Liu P, He H P, Wei G L, Chen T H, Tan W, Tan F D, Zhu J X, Zhu R L. J. Hazard. Mater., 2016, 306: 305.
[82]
Peña M A, Fierro J L G. Chem. Rev., 2001, 101(7): 1981.
[83]
Ding J Y, Liu J, Yang Y J, Zhao L M, Yu Y N. J. Hazard. Mater., 2022, 422: 126931.
[84]
Spinicci R, Tofanari A, Faticanti M, Pettiti I, Porta P. J. Mol. Catal. A Chem., 2001, 176(1-2): 247.
[85]
Pan K L, Pan G T, Chong S, Chang M B. J. Environ. Sci., 2018, 69: 205.
[86]
Liu X Q, Mi J X, Shi L, Liu H Y, Liu J, Ding Y, Shi J Q, He M H, Wang Z S, Xiong S C, Zhang Q F, Liu Y F, Wu Z S, Chen J J, Li J H. Angew. Chem. Int. Ed., 2021, 60(51): 26747.
[87]
Chen J H, Shen M Q, Wang X Q, Qi G, Wang J, Li W. Appl. Catal. B Environ., 2013, 134-135: 251.
[88]
Wu Y, Ni X, Beaurain A, Dujardin C, Granger P. Appl. Catal. B Environ., 2012, 125: 149.
[89]
Li J J, Zhang M, Elimian E A, Lv X L, Chen J, Jia H P. Chem. Eng. J., 2021, 412: 128560.
[90]
Forty A J. Nature, 1979, 282(5739): 597.
[91]
Si W Z, Wang Y, Peng Y, Li X, Li K Z, Li J H. Chem. Commun., 2015, 51(81): 14977.
[92]
Si W Z, Wang Y, Zhao S, Hu F Y, Li J H. Environ. Sci. Technol., 2016, 50(8): 4572.
[93]
Yang Q L, Li J Y, Wang D, Peng Y, Ma Y L. Catal. Today, 2021, 376: 205.
[94]
Yang Q L, Wang D, Wang C Z, Li X F, Li K Z, Peng Y, Li J H. Catal. Sci. Technol., 2018, 8(12): 3166.
[95]
Wang X Y, Pan Z Y, Chu X F, Huang K K, Cong Y G, Cao R, Sarangi R, Li L P, Li G S, Feng S H. Angew. Chem. Int. Ed., 2019, 58(34): 11720.
[96]
Luo Y J, Wang K C, Zuo J C, Qian Q R, Xu Y X, Liu X P, Xue H, Chen Q H. Catal. Sci. Technol., 2017, 7(2): 496.
[97]
Schneider H, Fischer R X, Schreuer J. J. Am. Ceram. Soc., 2015, 98(10): 2948.
[98]
Li C, Thampy S, Zheng Y, Kweun J M, Ren Y R, Chan J Y, Kim H, Cho M, Kim Y Y, Hsu J W P, Cho K. J. Phys. Condens. Mater., 2016, 28(12): 125602.
[99]
Li H B, Wang W H, Qian X Y, Cheng Y H, Xie X J, Liu J Y, Sun S H, Zhou J G, Hu Y F, Xu J P, Li L, Zhang Y, Du X W, Gao K H, Li Z Q, Zhang C, Wang S D, Chen H J, Zhao Y D, Lu F, Wang W C, Liu H. Catal. Sci. Technol., 2016, 6(11): 3971.
[100]
Yang Q L, Wang X, Wang X Y, Li Q, Li L, Yang W N, Chu X F, Liu H, Men J S, Peng Y, Ma Y L, Li J H. ACS Catal., 2021, 11(23): 14507.
[101]
Yang Q L, Li Q, Li L, Peng Y, Wang D, Ma Y L, Li J H. J. Hazard. Mater., 2021, 403: 123811.
[102]
Liu W, Xiang W J, Chen X, Song Z X, Gao C X, Tsubaki N, Zhang X J. Fuel, 2022, 312: 122975.
[103]
Chen J, Chen X, Yan D X, Jiang M Z, Xu W J, Yu H, Jia H P. Appl. Catal. B Environ., 2019, 250: 396.
[104]
Hu F Y, Peng Y, Chen J J, Liu S, Song H, Li J H. Appl. Catal. B Environ., 2019, 240: 329.
[105]
Zagoruiko A N, Mokrinskii V V, Veniaminov S A, Noskov A S. J. Environ. Chem. Eng., 2017, 5(6): 5850.
[106]
Gao W, Tang X L, Yi H H, Jiang S X, Yu Q J, Xie X Z, Zhuang R J. J. Environ. Sci., 2023, 125: 112.
[107]
Cheng D J, Meng X J. Chem. Res. Chin. Univ., 2022, 38(3): 716.
[108]
He F, Luo J Q, Liu S T. Chem. Eng. J., 2016, 294: 362.
[109]
Fan J W, Niu X F, Teng W, Zhang P, Zhang W X, Zhao D Y. J. Mater. Chem. A, 2020, 8(33): 17174.
[110]
Wang H, Peng B, Zhang R D, Chen H X, Wei Y. Appl. Catal. B Environ., 2020, 276: 118922.
[111]
Huang Y, Liu Y, Wang W, Chen M J, Li H W, Lee S C, Ho W, Huang T T, Cao J J. Appl. Catal. B Environ., 2020, 278: 119294.
[112]
Peng S, Yang X X, Strong J, Sarkar B, Jiang Q, Peng F, Liu D F, Wang H L. J. Hazard. Mater., 2020, 396: 122750.
[113]
Kuang Q, Jiang Z Y, Xie Z X, Lin S C, Lin Z W, Xie S Y, Huang R B, Zheng L S. J. Am. Chem. Soc., 2005, 127(33): 11777.
[114]
Li B, Yang Q L, Peng Y, Chen J J, Deng L, Wang D, Hong X W, Li J H. Chem. Eng. J., 2019, 366: 92.
[115]
Yang W H, Peng Y, Wang Y, Wang Y, Liu H, Su Z A, Yang W N, Chen J J, Si W Z, Li J H. Appl. Catal. B Environ., 2020, 278: 119279.
[116]
Yang W H, Wang Y, Yang W N, Liu H, Li Z G, Peng Y, Li J H. ACS Appl. Mater. Interfaces, 2021, 13(2): 2753.
[117]
Rong S P, Zhang P Y, Yang Y J, Zhu L, Wang J L, Liu F. ACS Catal., 2017, 7(2): 1057.
[118]
Ren Q M, Mo S P, Fan J, Feng Z T, Zhang M Y, Chen P R, Gao J J, Fu M L, Chen L M, Wu J L, Ye D Q. Chinese J. Catal., 2020, 41(12): 1873.
[119]
Tang W X, Yao M S, Deng Y Z, Li X F, Han N, Wu X F, Chen Y F. Chem. Eng. J., 2016, 306: 709.
[120]
Zheng Y, Su Y, Pang C, Yang L, Song C, Ji N, Ma D, Lu X, Han R, Liu Q. Environ. Sci. Technol., 2022, 56(3): 1905.
[121]
Dong F, Han W G, Han W L, Tang Z C. Appl. Catal. B Environ., 2022, 315: 121524.
[122]
Liu L C, Corma A. Chem. Rev., 2018, 118(10): 4981.
[123]
Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y, Zhang T. Accounts Chem. Res., 2013, 46(8): 1740.
[124]
Lee S, Molina L, López M, Alonso J, Hammer B, Lee B, Seifert S, Winans R, Elam J, Pellin M, Vajda S. Angew. Chem. Int. Ed., 2009, 48(8): 1467.
[125]
Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans R E, Elam J W, Meyer R J, Redfern P C, Teschner D, Schlögl R, Pellin M J, Curtiss L A, Vajda S. Science, 2010, 328(5975): 224.
[126]
Xie S H, Tsunoyama H, Kurashige W, Negishi Y, Tsukuda T. ACS Catal., 2012, 2(7): 1519.
[127]
Garetto T F, Apesteguı́a C R. Appl. Catal. B Environ., 2001, 32(1-2): 83.
[128]
Huang H B, Hu P, Huang H L, Chen J D, Ye X G, Leung D Y C. Chem. Eng. J., 2014, 252: 320.
[129]
Peng R S, Li S J, Sun X B, Ren Q M, Chen L M, Fu M L, Wu J L, Ye D Q. Appl. Catal. B Environ., 2018, 220: 462.
[130]
Shi Y J, Wang J L, Zhou R X. Chemosphere, 2021, 265: 129127.
[131]
Haruta M, Ueda A, Tsubota S, Torres Sanchez R M. Catal. Today, 1996, 29(1-4): 443.
[132]
Sun H, Yu X L, Yang X Q, Ma X Y, Lin M Y, Shao C F, Zhao Y, Wang F Y, Ge M F. Catal. Today, 2019, 332: 153.
[133]
Liu Y X, Dai H X, Deng J G, Xie S H, Yang H G, Tan W, Han W, Jiang Y, Guo G S. J. Catal., 2014, 309: 408.
[134]
Minicò S, Scirè S, Crisafulli C, Maggiore R, Galvagno S. Appl. Catal. B Environ., 2000, 28(3-4): 245.
[135]
Scirè S, Minicò S, Crisafulli C, Satriano C, Pistone A. Appl. Catal. B Environ., 2003, 40(1): 43.
[136]
Wang Y F, Zhang C B, He H. ChemCatChem, 2018, 10(5): 998.
[137]
Guo Y L, Gao Y J, Li X, Zhuang G L, Wang K C, Zheng Y, Sun D H, Huang J L, Li Q B. Chem. Eng. J., 2019, 362: 41.
[138]
Bedia J, Rosas J M, Rodríguez-Mirasol J, Cordero T. Appl. Catal. B Environ., 2010, 94(1-2): 8.
[139]
Qi H, Alexson D, Glembocki O, Prokes S M. Nanotechnology, 2010, 21(21): 215706.
[140]
Waterhouse G I N, Bowmaker G A, Metson J B. Phys. Chem. Chem. Phys., 2001, 3(17): 3838.
[141]
Ou C C, Chen C H, Chan T S, Chen C S, Cheng S. J. Catal., 2019, 380: 43.
[142]
Ye Q, Zhao J S, Huo F F, Wang J, Cheng S Y, Kang T F, Dai H X. Catal. Today, 2011, 175(1): 603.
[143]
Lu A L, Sun H L, Zhang N W, Che L M, Shan S Y, Luo J, Zheng J B, Yang L F, Peng D L, Zhong C J, Chen B H. ACS Catal., 2019, 9(8): 7431.
[144]
Zhang J H, Li Y B, Zhang Y, Chen M, Wang L, Zhang C B, He H. Sci. Rep., 2015, 5: 12950.
[145]
Ousmane M, Liotta L F, Pantaleo G, Venezia A M, Di Carlo G, Aouine M, Retailleau L, Giroir-Fendler A. Catal. Today, 2011, 176(1): 7.
[146]
Chen X Y, Wang H H, Chen M, Qin X X, He H, Zhang C B. Appl. Catal. B Environ., 2021, 282: 119543.
[147]
Wang C Y, Li Y B, Zhang C B, Chen X Y, Liu C L, Weng W Z, Shan W P, He H. Appl. Catal. B Environ., 2021, 282: 119540.
[148]
Wen X Y, Li W C, Yan J X, Wang X J, Ren E B, Shi Z F, Li J, Ding X G, Mo S P, Mo D Q. J. Phys. Chem. C, 2022, 126(3): 1450.
[149]
Li J M, Qu Z P, Qin Y, Wang H. Appl. Surf. Sci., 2016, 385: 234.
[150]
Jiang W, Feng Y N, Zeng Y Q, Yao Y, Gu L L, Sun H C, Ji W J, Arandiyan H, Au C T. J. Catal., 2019, 375: 171.
[151]
Chang S, Jia Y, Zeng Y, Qian F, Guo L, Wu S, Lu J, Han Y. J. Rare Earth., 2021, 40(11): 1743.
[152]
Hu Z, Liu X F, Meng D M, Guo Y, Guo Y L, Lu G Z. ACS Catal., 2016, 6(4): 2265.
[153]
Xiao M L, Yu X L, Guo Y C, Ge M F. Environ. Sci. Technol., 2022, 56(2): 1376.
[154]
Yu K, Deng J, Shen Y J, Wang A Y, Shi L Y, Zhang D S. Iscience, 2021, 24(6): 102689.
[155]
Li N, Huang B, Dong X, Luo J S, Wang Y, Wang H, Miao D Y, Pan Y, Jiao F, Xiao J P, Qu Z P. Nat. Commun., 2022, 13: 2209.
[156]
Gan T, Yang J X, Morris D, Chu X F, Zhang P, Zhang W X, Zou Y C, Yan W F, Wei S H, Liu G. Nat. Commun., 2021, 12(1): 2741.
[157]
Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nat. Chem., 2011, 3(8): 634.
[158]
Zhang N Q, Ye C L, Yan H, Li L C, He H, Wang D S, Li Y D. Nano Res., 2020, 13(12): 3165.
[159]
Lang R, Du X R, Huang Y K, Jiang X Z, Zhang Q, Guo Y L, Liu K P, Qiao B T, Wang A Q, Zhang T. Chem. Rev., 2020, 120(21): 11986.
[160]
Wang A Q, Li J, Zhang T. Nat. Rev. Chem., 2018, 2(6): 65.
[161]
Cui T T, Li L X, Ye C L, Li X Y, Liu C X, Zhu S H, Chen W, Wang D S. Adv. Funct. Mater., 2022, 32(9): 2108381.
[162]
Weon S, Huang D H, Rigby K, Chu C H, Wu X H, Kim J H. ACS Environ. Sci. Technol. Eng., 2021, 1(2): 157.
[163]
Yan H, Su C L, He J, Chen W. J. Mater. Chem. A, 2018, 6(19): 8793.
[164]
Liu L C, Diaz U, Arenal R, Agostini G, Concepcion P, Corma A. Nat. Mater., 2017, 16(12): 1272.
[165]
Jiao L, Jiang H L. Chem-Us, 2019, 5(4): 786.
[166]
DeRita L, Dai S, Lopez-Zepeda K, Pham N, Graham G W, Pan X Q, Christopher P. J. Am. Chem. Soc., 2017, 139(40): 14150.
[167]
Duan S B, Wang R M, Liu J Y. Nanotechnology, 2018, 29(20):
[168]
Qiao B T, Liang J X, Wang A Q, Xu C Q, Li J, Zhang T, Liu J Y. Nano Res., 2015, 8(9): 2913.
[169]
Wan J W, Chen W X, Jia C Y, Zheng L R, Dong J C, Zheng X S, Wang Y, Yan W S, Chen C, Peng Q, Wang D S, Li Y D. Adv. Mater., 2018, 30(11): 1705369.
[170]
Wu Z N, Hwang I, Cha G, Qin S S, Tomanec O, Badura Z, Kment S, Zboril R, Schmuki P. Small, 2022, 18(2): 2104892.
[171]
Kunwar D, Zhou S L, DeLaRiva A, Peterson E J, Xiong H F, Pereira-Hernández X I, Purdy S C, ter Veen R, Brongersma H H, Miller J T, Hashiguchi H, Kovarik L, Lin S, Guo H, Wang Y, Datye A K. ACS Catal., 2019, 9(5): 3978.
[172]
Chen Z, Zhang Q, Chen W X, Dong J C, Yao H R, Zhang X B, Tong X J, Wang D S, Peng Q, Chen C, He W, Li Y D. Adv. Mater., 2018, 30(5): 1704720.
[173]
Liu P X, Zhao Y, Qin R X, Mo S G, Chen G X, Gu L, Chevrier D M, Zhang P, Guo Q, Zang D D, Wu B H, Fu G, Zheng N F. Science, 2016, 352(6287): 797.
[174]
Wei S J, Li A, Liu J C, Li Z, Chen W X, Gong Y, Zhang Q H, Cheong W C, Wang Y, Zheng L R, Xiao H, Chen C, Wang D S, Peng Q, Gu L, Han X D, Li J, Li Y D. Nat. Nanotechnol., 2018, 13(9): 856.
[175]
Chen J, Jiang M Z, Xu W J, Chen J, Hong Z X, Jia H P. Appl. Catal. B Environ., 2019, 259: 118013.
[176]
Zhang C B, Liu F D, Zhai Y P, Ariga H, Yi N, Liu Y C, Asakura K, Flytzani-Stephanopoulos M, He H. Angew. Chem. Int. Ed., 2012, 51(38): 9628.
[177]
Hu P P, Huang Z W, Amghouz Z, Makkee M, Xu F, Kapteijn F, Dikhtiarenko A, Chen Y X, Gu X, Tang X F. Angew. Chem. Int. Ed., 2014, 53(13): 3418.
[178]
Zhang N Q, Zhang X X, Tao L, Jiang P, Ye C L, Lin R, Huang Z W, Li A, Pang D W, Yan H, Wang Y, Xu P, An S F, Zhang Q H, Liu L C, Du S X, Han X D, Wang D S, Li Y D. Angew. Chem. Int. Ed., 2021, 60(11): 6170.
[179]
Yang W, Zhao X, Wang Y, Wang X, Liu H, Yang W, Zhou H, Wu Y A, Sun C, Peng Y, Li J. Catal. Sci. Technol., 2022, 12(19): 5932.
[180]
Fang J X, Huang Z W, Wang L P, Guo S F, Li M X, Liu Y C, Chen J M, Wu X M, Shen H Z, Zhao H W, Jing G H. J. Phys. Chem. C, 2022, 126(13): 5873.
[181]
Jiang Z Y, Feng X B, Deng J L, He C, Douthwaite M, Yu Y K, Liu J, Hao Z P, Zhao Z. Adv. Funct. Mater., 2019, 29(31): 1902041.
[182]
Jiang Z Y, Jing M Z, Feng X B, Xiong J C, He C, Douthwaite M, Zheng L R, Song W Y, Liu J, Qu Z G. Appl. Catal. B Environ., 2020, 278: 119304.
[183]
Nie L, Mei D, Xiong H, Peng B, Ren Z, Hernandez X I P, DeLaRiva A, Wang M, Engelhard M H, Kovarik L, Datye A K, Wang Y. Science, 2019, 363(6425): 1419.
[184]
Kwak J H, Hu J Z, Mei D, Yi C W, Kim D H, Peden C H F, Allard L F, Szanyi J. Science, 2009, 325(5948): 1670.
[185]
Wang F, Ma J Z, Xin S H, Wang Q, Xu J, Zhang C B, He H, Zeng X C. Nat. Commun., 2020, 11(1): 529.
[186]
Xie S H, Zhang X, Xu P, Hatcher B, Liu Y X, Ma L, Ehrlich S N, Hong S, Liu F D. Catal. Today, 2022, 402: 149.
[187]
Wang H, Dong J S, Allard L F, Lee S, Oh S, Wang J, Li W, Shen M Q, Yang M. Appl. Catal. B Environ., 2019, 244: 327.
[188]
Zhao S Z, Wen Y F, Liu X J, Pen X Y, Lu F, Gao F Y, Xie X Z, Du C C, Yi H H, Kang D J, Tang X L. Nano Res., 2020, 13(6): 1544.
[189]
Wang Z W, Yang H G, Liu R, Xie S H, Liu Y X, Dai H X, Huang H B, Deng J G. J. Hazard. Mater., 2020, 392: 122258.
[190]
Jeong H, Kwon O, Kim B S, Bae J, Shin S, Kim H E, Kim J, Lee H J. Nat. Catal., 2020, 3(4): 368.
[191]
Su Y, Fu K X, Zheng Y F, Ji N, Song C F, Ma D G, Lu X B, Han R, Liu Q L. Appl. Catal. B Environ., 2021, 288: 119980.
[192]
Jeong H, Lee G, Kim B S, Bae J, Han J W, Lee H. J. Am. Chem. Soc., 2018, 140(30): 9558.

Funding

National Natural Science Foundation Program of China(22306210)
National Key Research & Development Program of China(2022YFB3504004)
SINOPEC RIPP Project(PR20230115)
PDF(41160 KB)

Accesses

Citation

Detail

Sections
Recommended

/