Directed Preparation of 1,3-Propanediol From Glycerol Via Chemoselective Hydrogenolysis Over Bimetallic Catalyst: Active Sites, Structure-Functional Relationship and Mechanism

Man Yang, Yuxiang Jiao, Yujing Ren

Prog Chem ›› 2024, Vol. 36 ›› Issue (2) : 256-270.

PDF(9611 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(9611 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (2) : 256-270. DOI: 10.7536/PC230615
18

Directed Preparation of 1,3-Propanediol From Glycerol Via Chemoselective Hydrogenolysis Over Bimetallic Catalyst: Active Sites, Structure-Functional Relationship and Mechanism

Author information +
History +

Abstract

1,3-propanediol is one of the most important monomers in the polyester industry. Catalytic conversion of glycerol to 1,3-propanediol has important application value. In this article, we reviewed the research progress of bimetallic catalysts for the hydrogenolysis of glycerol to 1,3-propanediol, especially emphasizing Pt-W catalytic systems with high catalytic efficiency and great industrial application prospects. By reviewing the interaction between W species, with different microstructures and chemical environments, and Pt metal, as well as the structure-performance relationship between Pt-W dual sites and glycerol hydrogenolysis, the influence of in-situ generated Brønsted acid active species on catalytic activity, selectivity, and stability was summarized, the source of in-situ generated Brønsted acid and catalytic mechanism was discussed, and finally, the development of bimetallic catalysts for selective hydrogenolysis of glycerol to 1,3-propanediol was prospected.

Contents

1 Introduction

2 Catalyst system for selective hydrogenation of glycerol to 1,3-Propandiol

2.1 Tungsten-based catalyst

2.2 Rhenium-based catalyst

2.3 Other catalysts

3 Mechanism of selective hydrogenolysis of glycerol to 1, 3-propanediol

3.1 Dehydration-hydrogenation mechanism

3.2 Etherification-hydrogenation mechanism

3.3 Dehydrogenation-dehydration-hydrogenation mechanism

3.4 Chelation-hydrogenation mechanism

3.5 Mechanism of direct hydrogenolysis

4 Conclusion and outlook

Key words

glycerol / chemoselective hydrogenolysis / 1,3-propanediol / bimetallic catalyst / catalytic mechanism

Cite this article

Download Citations
Man Yang , Yuxiang Jiao , Yujing Ren. Directed Preparation of 1,3-Propanediol From Glycerol Via Chemoselective Hydrogenolysis Over Bimetallic Catalyst: Active Sites, Structure-Functional Relationship and Mechanism[J]. Progress in Chemistry. 2024, 36(2): 256-270 https://doi.org/10.7536/PC230615

References

[1]
Zhou C H, Zhao H, Tong D S, Wu L M, Yu W H. Catal. Rev., 2013, 55(4): 369.
[2]
Fan L M, Wang J H, Pei W. Zhejiang Chemical Industry, 2009, 40 (6): 22.
(樊利民, 王菊华, 裴文. 浙江化工, 2009, 40 (6): 22.)
[3]
Forsberg C W. Appl. Environ. Microbiol., 1987, 53(4): 639.
[4]
Li S, Li J. Fine and Specialty Chemicals, 2022, 30(3): 12.
(李烁, 李靖. 精细与专用化学品, 2022, 30(3): 12.)
[5]
Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F. Green Chem., 2008, 10(1): 13.
[6]
Nakagawa Y, Tamura M, Tomishige K. J. Mater. Chem. A, 2014, 2(19): 6688.
[7]
Nimlos M R, Blanksby S J, Qian X H, Himmel M E, Johnson D K. J. Phys. Chem. A, 2006, 110(18): 6145.
[8]
Che T M. Production of propanediols: U.S. Patent, 1987, 4: 2.
[9]
Chaminand J, Djakovitch L A, Gallezot P, Marion P, Pinel C, Rosier C. Green Chem., 2004, 6(8): 359.
[10]
Ten Dam J, Djanashvili K, Kapteijn F, Hanefeld U. ChemCatChem, 2013, 5(2): 497.
[11]
Huang L, Zhu Y L, Zheng H Y, Ding G Q, Li Y W. Catal. Lett., 2009, 131(1): 312.
[12]
Zhu S H, Zhu Y L, Hao S L, Zheng H Y, Mo T, Li Y W. Green Chem., 2012, 14(9): 2607.
[13]
Zhu S H, Gao X Q, Zhu Y L, Zhu Y F, Xiang X M, Hu C X, Li Y W. Appl. Catal. B Environ., 2013, 140/141: 60.
[14]
Chen C L, Song M J, Qin L Z. J. Nanjing Univ. Technol. Nat. Sci. Ed., 2011, 33(1): 1.
陈长林, 宋敏洁, 秦丽珍. 南京工业大学学报(自然科学版), 2011, 33(1): 1.)
[15]
Kurosaka T, Maruyama H, Naribayashi I, Sasaki Y. Catal. Commun., 2008, 9(6): 1360.
[16]
Gong L F, Lv Y, Ding Y J, Lin R H, Li J W, Dong W D, Wang T, Chen W M. Chin. J. Catal., 2009, 30(12): 1189.
(龚磊峰, 吕元, 丁云杰, 林荣和, 李经伟, 董文达, 王涛, 陈维苗. 催化学报, 2009, 30(12): 1189.)
[17]
Zhao J X, Hou B, Guo H Q, Jia L T, Niu P Y, Chen C B, Xi H J, Li D B, Zhang J L. ChemCatChem, 2022, 14(14): e202200341.
[18]
Fan Y Q, Cheng S J, Wang H, Tian J, Xie S H, Pei Y, Qiao M H, Zong B N. Appl. Catal. B Environ., 2017, 217: 331.
[19]
Qin L Z, Song M J, Chen C L. Green Chem., 2010, 12(8): 1466.
[20]
Zhu S H, Gao X Q, Zhu Y L, Cui J L, Zheng H Y, Li Y W. Appl. Catal. B Environ., 2014, 158/159: 391.
[21]
Zhou W, Luo J, Wang Y, Liu J F, Zhao Y J, Wang S P, Ma X B. Appl. Catal. B Environ., 2019, 242: 410.
[22]
Luo Z C, Zhu Z G, Xiao R, Chu D W. Chem., 2023, 18(3): e202201046.
[23]
Zeng Y, Jiang L, Zhang X X, Xie S H, Pei Y, Zhou G B, Hua W M, Qiao M H, Li Z H, Zong B N. ACS Sustainable Chem. Eng., 2022, 10(29): 9532.
[24]
Zhou Z M, Jia H Y, Guo Y, Wang Y G, Liu X H, Xia Q N, Li X, Wang Y Q. ChemCatChem, 2021, 13(18): 3953.
[25]
Wang Y J, Zhou Z M, Wang C, Zhao L H, Xia Q N. Front. Chem., 2022, 10: 1004925.
[26]
Gong L F, Lu Y, Ding Y J, Lin R H, Li J W, Dong W D, Wang T, Chen W M. Appl. Catal. A Gen., 2010, 390(1/2): 119.
[27]
Shinmi Y, Koso S, Kubota T, Nakagawa Y, Tomishige K. Appl. Catal. B Environ., 2010, 94(3/4): 318.
[28]
Priya S S, Kumar V P, Kantam M L, Bhargava S K, Srikanth A, Chary K V R. Ind. Eng. Chem. Res., 2015, 54(37): 9104.
[29]
Bhowmik S, Enjamuri N, Sethia G, Akula V, Marimuthu B, Darbha S. Mol. Catal., 2022, 531: 112704.
[30]
Shi G J, Xu J Y, Song Z G, Cao Z, Jin K, Xu S H, Yan X T. Mol. Catal., 2018, 456: 22.
[31]
Miao G, Shi L, Zhou Z M, Zhu L J, Zhang Y F, Zhao X P, Luo H, Li S G, Kong L Z, Sun Y H. ACS Catal., 2020, 10(24): 15217.
[32]
Zhu L J, Sun M Y, Zhao X P, Zhang Y F, Luo H, Liu W, Miao G, Kong L Z. Sustain. Energy Fuels, 2021, 5(6): 1747.
[33]
Suzuki N, Takahashi M, Tamura M. JP Patent. 2012, 207326849A.
[34]
Arundhathi R, Mizugaki T, Mitsudome T, Jitsukawa K, Kaneda K. ChemSusChem, 2013, 6(8): 1345.
[35]
Feng S H, Zhao B B, Liu L, Dong J X. Ind. Eng. Chem. Res., 2017, 56(39): 11065.
[36]
Numpilai T, Cheng C K, Seubsai A, Faungnawakij K, Limtrakul J, Witoon T. Environ. Pollut., 2021, 272: 116029.
[37]
Zhu S H, Gao X Q, Zhu Y L, Li Y W. J. Mol. Catal. A Chem., 2015, 398: 391.
[38]
García-Fernández S, Gandarias I, Requies J, Güemez M B, Bennici S, Auroux A, Arias P L. J. Catal., 2015, 323: 65.
[39]
Lei N, Zhao X C, Hou B L, Yang M, Zhou M X, Liu F, Wang A Q, Zhang T. ChemCatChem, 2019, 11(16): 3903.
[40]
Zhou W, Li Y, Wang X F, Yao D W, Wang Y, Huang S Y, Li W, Zhao Y J, Wang S P, Ma X B. J. Catal., 2020, 388: 154.
[41]
Fan Y Q, Cheng S J, Wang H, Ye D H, Xie S H, Pei Y, Hu H R, Hua W M, Li Z H, Qiao M H, Zong B N. Green Chem., 2017, 19(9): 2174.
[42]
Cheng S J, Fan Y Q, Zhang X X, Zeng Y, Xie S H, Pei Y, Zeng G F, Qiao M H, Zong B N. Appl. Catal. B Environ., 2021, 297: 120428.
[43]
Zhao B B, Liang Y, Liu L, He Q, Dong J X. ChemCatChem, 2021, 13(16): 3695.
[44]
Zhang Y H, Zhao X C, Wang Y, Zhou L K, Zhang J Y, Wang J, Wang A Q, Zhang T. J. Mater. Chem. A, 2013, 1(11): 3724.
[45]
Liu L J, Zhang Y H, Wang A Q, Zhang T. Chin. J. Catal., 2012, 33(7/8): 1257.
[46]
Wang J, Zhao X C, Lei N, Li L, Zhang L L, Xu S T, Miao S, Pan X L, Wang A Q, Zhang T. ChemSusChem, 2016, 9(8): 784.
[47]
Zhao X C, Wang J, Yang M, Lei N, Li L, Hou B L, Miao S, Pan X L, Wang A Q, Zhang T. ChemSusChem, 2017, 10(5): 819.
[48]
Yang M, Zhao X C, Ren Y J, Wang J, Lei N, Wang A Q, Zhang T. Chin. J. Catal., 2018, 39(6): 1027.
[49]
Yang C J, Zhang F, Lei N, Yang M, Liu F, Miao Z L, Sun Y N, Zhao X C, Wang A Q. Chin. J. Catal., 2018, 39(8): 1366.
[50]
Harisekhar M, Kumar V P, Priya S S, Chary K V. J. Chem. Technol. Biotechnol., 2015, 90(10):1906.
[51]
Niu Y F, Zhao B B, Liang Y, Liu L, Dong J X. Ind. Eng. Chem. Res., 2020, 59(16): 7389.
[52]
Yang M, Wu K Y, Sun S D, Ren Y J. Appl. Catal. B Environ., 2022, 307: 121207.
[53]
Lei N, Miao Z L, Liu F, Wang H, Pan X L, Wang A Q, Zhang T. Chin. J. Catal., 2020, 41(8): 1261.
[54]
Nakagawa Y, Shinmi Y, Koso S, Tomishige K. J. Catal., 2010, 272(2): 191.
[55]
Nakagawa Y, Ning X H, Amada Y, Tomishige K. Appl. Catal. A Gen., 2012, 433/434: 128.
[56]
Tamura M, Amada Y, Liu S B, Yuan Z L, Nakagawa Y, Tomishige K. J. Mol. Catal. A Chem., 2014, 388/389: 177.
[57]
Liu L J, Asano T, Nakagawa Y, Tamura M, Okumura K, Tomishige K. ACS Catal., 2019, 9(12): 10913.
[58]
Deng C H, Duan X Z, Zhou J H, Chen D, Zhou X G, Yuan W K. Catal. Today, 2014, 234: 208.
[59]
Deng C H, Leng L, Duan X Z, Zhou J H, Zhou X G, Yuan W K. J. Mol. Catal. A Chem., 2015, 410: 81.
[60]
Deng C H, Leng L, Zhou J H, Zhou X G, Yuan W K. Chin. J. Catal., 2015, 36(10): 1750.
[61]
Deng C H, Duan X Z, Zhou J H, Zhou X G, Yuan W K, Scott S L. Catal. Sci. Technol., 2015, 5(3): 1540.
[62]
Chanklang S, Mondach W, Somchuea P, Witoon T, Chareonpanich M, Faungnawakij K, Seubsai A. Catal. Today, 2022, 397/399: 356.
[63]
Ma L, He D H. Top. Catal., 2009, 52(6): 834.
[64]
Ma L, He D H. Catal. Today, 2010, 149(1/2): 148.
[65]
Luo W T, Lyu Y, Gong L F, Du H, Wang T, Ding Y J. RSC Adv., 2016, 6(17): 13600.
[66]
Oh J, Dash S, Lee H. Green Chem., 2011, 13(8): 2004.
[67]
Priya S S, Kumar V P, Kantam M L, Bhargava S K, Chary K V R. Catal. Lett., 2014, 144(12): 2129.
[68]
Priya S S, Bhanuchander P, Kumar V P, Dumbre D K, Periasamy S R, Bhargava S K, Lakshmi Kantam M, Chary K V R. ACS Sustainable Chem. Eng., 2016, 4(3): 1212.
[69]
Vanama P K, Kumar A, Ginjupalli S R, Chary Komandur V R. Catal. Today, 2015, 250: 226.
[70]
Liu Q Y, Cao X F, Wang T J, Wang C G, Zhang Q, Ma L L. RSC Adv., 2015, 5(7): 4861.
[71]
Wan X Y, Zhang Q, Zhu M M, Zhao Y, Liu Y M, Zhou C M, Yang Y H, Cao Y. J. Catal., 2019, 375: 339.
[72]
Amada Y, Shinmi Y, Koso S, Kubota T, Nakagawa Y, Tomishige K. Appl. Catal. B Environ., 2011, 105(1/2): 117.
[73]
Wang S, Liu H C. Catal. Lett., 2007, 117(1): 62.
[74]
Huang L, Zhu Y L, Zheng H Y, Li Y W, Zeng Z Y. J. Chem. Technol. Biotechnol., 2008, 83(12): 1670.
[75]
Montassier C, Ménézo J C, Moukolo J, Naja J, Hoang L C, Barbier J, Boitiaux J P. J. Mol. Catal., 1991, 70(1): 65.
[76]
Falcone D D, Hack J H, Klyushin A Y, Knop-Gericke A, Schlögl R, Davis R J. ACS Catal., 2015, 5(10): 5679.
[77]
Yuan Z L, Wu P, Gao J, Lu X Y, Hou Z Y, Zheng X M. Catal. Lett., 2009, 130(1): 261.
[78]
Tomishige K, Nakagawa Y, Tamura M. Green Chem., 2017, 19(13): 2876.
[79]
Guan J, Chen X F, Peng G M, Wang X C, Cao Q, Lan Z G, Mu X D. Chin. J. Catal., 2013, 34(9): 1656.
[80]
García-Fernández S, Gandarias I, Requies J, Soulimani F, Arias P L, Weckhuysen B M. Appl. Catal. B Environ., 2017, 204: 260.
[81]
Copeland J R, Santillan I A, Schimming S M, Ewbank J L, Sievers C. J. Phys. Chem. C, 2013, 117(41): 21413.
[82]
Zhou W, Zhao Y J, Wang Y, Wang S P, Ma X B. ChemCatChem, 2016, 8(23): 3663.
[83]
Wang B, Liu F, Guan W X, Wang A Q, Zhang T. ACS Sustainable Chem. Eng., 2021, 9(16): 5705.
[84]
Zhao B B, Liang Y, Liu L, He Q, Dong J X. Green Chem., 2020, 22(23): 8254.

Funding

National Key R&D Program of China(2023YFA1506603)
National Natural Science Foundation of China(22002118)
National Natural Science Foundation of China(22208262)
Postdoctoral Research Foundation of China(2020M683528)
Postdoctoral Research Foundation of China(2020TQ0245)
Natural Science Foundation of Shaanxi Provincial Department of Education(21JP086)
Talent Fund of Association for Science and Technology in Shaanxi, China(20230625)
PDF(9611 KB)

Accesses

Citation

Detail

Sections
Recommended

/