Molecular Electronic Devices Based on Carbon Electrodes

Junhong Xue, Xuan Ji, Cong Chen, Xiaohai Ding, Xi Yu, Wenping Hu

Prog Chem ›› 2024, Vol. 36 ›› Issue (1) : 1-17.

PDF(11040 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(11040 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (1) : 1-17. DOI: 10.7536/PC230618
Review

Molecular Electronic Devices Based on Carbon Electrodes

Author information +
History +

Abstract

Molecule-based electronic devices, using the intrinsic electronic structure of molecules as device units and constructing electronic devices at the molecular scale, serve as an ideal experimental platform for studying molecular charge transfer mechanisms. They also provide a novel strategy for achieving new functional electronic devices at the micro-nano scale. The realization of a micro-nano electrode gap and a reliable electrode-molecule connection are key factors in developing highly reproducible molecular devices. Carbon materials have been widely applied in the construction of molecular devices due to their remarkable chemical stability and abundant surface chemistry. This review summarizes the research status of using carbon as electrodes in molecular device construction, showcasing the prominent advantages of carbon materials, such as high stability, low cost, and scalability, as well as their applications and research progress in large-area molecular devices and single-molecule devices. The review presents a wealth of achievements in the construction of functional molecular devices, such as molecular switches and rectifiers, using carbon electrodes, as well as the study of the structure-performance relationship in molecular-electron transport. Lastly, this work analyzes the challenges currently faced in carbon-based molecular device research and provides prospects for the chemical connection of carbon electrode-molecular interface and functionalization of carbon-based molecular devices, as well as the integration of future molecular devices.

Contents

1 Introduction

2 Electrode materials in molecular junctions

2.1 Metal electrodes

2.2 Semiconductor electrodes

2.3 Carbon electrodes

3 Carbon electrodes in large-area molecular devices

4 Carbon electrodes in single molecular junctions

4.1 Preparation technology of carbon-based single molecular junctions

4.2 Function and regulation of carbon-based single molecular junctions

4.3 Analysis and detection of carbon-based single molecule devices

5 Conclusion and outlook

Key words

molecular electronics / carbon electrode materials / single-molecule electronic devices / large-area molecular electronic devices

Cite this article

Download Citations
Junhong Xue , Xuan Ji , Cong Chen , et al . Molecular Electronic Devices Based on Carbon Electrodes[J]. Progress in Chemistry. 2024, 36(1): 1-17 https://doi.org/10.7536/PC230618

References

[1]
Waldrop M M. Nature, 2016, 530(7589): 144.
[2]
Xiang D, Wang X, Jia C, Lee T, Guo X. Chem. Rev., 2016, 116(7): 4318.
[3]
Klyamer D D, Sukhikh A S, Krasnov P O, Gromilov S A, Morozova N B, Basova T V. Appl. Surf. Sci., 2016, 372: 79.
[4]
Kumari A, Dhawan S, Singh H, Haridas V, Sinha A. J. Mol. Liq., 2022, 359.
[5]
Guzel M, Torlak Y, Choi H, Ak M. Eur. Polym. J., 2023, 186.
[6]
Hnid I, Frath D, Lafolet F, Sun X N, Lacroix J C. J. Am. Chem. Soc., 2020, 142(17): 7732.
[7]
Xin N, Hu C, Al Sabea H, Zhang M, Zhou C, Meng L, Jia C, Gong Y, Li Y, Ke G, He X, Selvanathan P, Norel L, Ratner M A, Liu Z, Xiao S, Rigaut S, Guo H, Guo X. J. Am. Chem. Soc., 2021, 143(49): 20811.
[8]
Li J, Hou S, Yao Y R, Zhang C, Wu Q, Wang H C, Zhang H, Liu X, Tang C, Wei M, Xu W, Wang Y, Zheng J, Pan Z, Kang L, Liu J, Shi J, Yang Y, Lambert C J, Xie S Y, Hong W. Nat. Mater., 2022, 21(8): 917.
[9]
Tefashe U M, Van Dyck C, Saxena S K, Lacroix J C, McCreery R L. J. Phys. Chem. C, 2019, 123(48): 29162.
[10]
Chen X P, Roemer M, Yuan L, Du W, Thompson D, del Barco E, Nijhuis C A. Nat. Nanotechnol., 2017, 12(8): 797.
[11]
Yang C, Yang C, Guo Y, Feng J, Guo X F. Nat. Protoc., 2023, 18(6): 1958.
[12]
Gorenskaia E, Turner K L, Martin S, Cea P, Low P J. Nanoscale, 2021, 13(20): 9055.
[13]
Bergren A J, Zeer-Wanklyn L, Semple M, Pekas N, Szeto B, McCreery R L. J. Phys. Condens. Matter, 2016, 28(9): 094011.
[14]
Aviram A, Ratner M A. Chem. Phys. Lett., 1974, 29(2): 277.
[15]
Xin N, Guan J, Zhou C, Chen X, Gu C, Li Y, Ratner M A, Nitzan A, Stoddart J F, Guo X. Nat. Rev. Phys., 2019, 1(3): 211.
[16]
Li X, Ge W, Guo S, Bai J, Hong W. Angew. Chem. Int. Ed., 2023, 62(13): e202216819.
[17]
McCreery R L. Acc. Chem. Res., 2022, 55(19): 2766.
[18]
Park H, Lim A K L, Alivisatos A P, Park J, McEuen P L. Appl. Phys. Lett., 1999, 75(2): 301.
[19]
Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M. Science, 1997, 278(5336): 252.
[20]
Bai J, Daaoub A, Sangtarash S, Li X, Tang Y, Zou Q, Sadeghi H, Liu S, Huang X, Tan Z, Liu J, Yang Y, Shi J, Meszaros G, Chen W, Lambert C, Hong W. Nat. Mater., 2019, 18(4): 364.
[21]
Huang X, Tang C, Li J, Chen L C, Zheng J, Zhang P, Le J, Li R, Li X, Liu J, Yang Y, Shi J, Chen Z, Bai M, Zhang H L, Xia H, Cheng J, Tian Z Q, Hong W. Sci. Adv., 2019, 5(6): eaaw3072.
[22]
Bumm L A, Arnold J J, Cygan M T, Dunbar T D, Burgin T P, Jones L, Allara D L, Tour J M, Weiss P S. Science, 1996, 271(5256): 1705.
[23]
Yao X L, Sun X N, Lafolet F, Lacroix J C. Nano Lett., 2020, 20(9): 6899.
[24]
Luo L, Benameur A, Brignou P, Choi S H, Rigaut S, Frisbie C D. J. Phys. Chem. C, 2011, 115(40): 19955.
[25]
Yao X, Vonesch M, Combes M, Weiss J, Sun X, Lacroix J C. Nano Lett., 2021, 21(15): 6540.
[26]
Jeong H, Kim D, Xiang D, Lee T. ACS Nano, 2017, 11(7): 6511.
[27]
Herrer L, Martin S, Cea P. Appl. Sci. Basel, 2020, 10(17).
[28]
Bof Bufon C C, Vervacke C, Thurmer D J, Fronk M, Salvan G, Lindner S, Knupfer M, Zahn D R T, Schmidt O G. J. Phys. Chem. C, 2014, 118(14): 7272.
[29]
Han B, Li Y, Ji X, Song X, Ding S, Li B, Khalid H, Zhang Y, Xu X, Tian L, Dong H, Yu X, Hu W. J. Am. Chem. Soc., 2020, 142(21): 9708.
[30]
Loo Y L, Lang D V, Rogers J A, Hsu J W P. Nano Lett., 2003, 3(7): 913.
[31]
Shimizu K T, Fabbri J D, Jelincic J J, Melosh N A. Adv. Mater., 2006, 18(12): 1499.
[32]
Martín S, Ballesteros L M, González-Orive A, Oliva H, Marqués-González S, Lorenzoni M, Nichols R J, Pérez-Murano F, Low P J, Cea P. J. Mater. Chem. C, 2016, 4(38): 9036.
[33]
Chabinyc M L, Chen X, Holmlin R E, Jacobs H, Skulason H, Frisbie C D, Mujica V, Ratner M A, Rampi M A, Whitesides G M. J. Am. Chem. Soc., 2002, 124(39): 11730.
[34]
Chen J, Giroux T J, Nguyen Y, Kadoma A A, Chang B S, VanVeller B, Thuo M M. Phys. Chem. Chem. Phys., 2018, 20(7): 4864.
[35]
Akkerman H B, Blom P W, de Leeuw D M, de Boer B. Nature, 2006, 441(7089): 69.
[36]
Puebla-Hellmann G, Venkatesan K, Mayor M, Lortscher E. Nature, 2018, 559(7713): 232.
[37]
Aragones A C, Darwish N, Ciampi S, Sanz F, Gooding J J, Diez-Perez I. Nat. Commun., 2017, 8: 15056.
[38]
De Sousa J A, Pfattner R, Gutierrez D, Jutglar K, Bromley S T, Veciana J, Rovira C, Mas-Torrent M, Fabre B, Crivillers N. ACS Appl. Mater. Interfaces, 2023, 15(3): 4635.
[39]
Vilan A, Cahen D. Chem. Rev., 2017, 117(5): 4624.
[40]
Xu B Q, Tao N J J. Science, 2003, 301(5637): 1221.
[41]
Nerngchamnong N, Yuan L, Qi D C, Li J, Thompson D, Nijhuis C A. Nat. Nanotechnol., 2013, 8(2): 113.
[42]
Vezzoli A, Brooke R J, Ferri N, Higgins S J, Schwarzacher W, Nichols R J. Nano Lett., 2017, 17(2): 1109.
[43]
Vezzoli A, Brooke R J, Higgins S J, Schwarzacher W, Nichols R J. Nano Lett., 2017, 17(11): 6702.
[44]
Haj-Yahia A E, Yaffe O, Bendikov T, Cohen H, Feldman Y, Vilan A, Cahen D. Adv. Mater., 2013, 25(5): 702.
[45]
Yaffe O, Qi Y B, Scheres L, Puniredd S R, Segev L, Ely T, Haick H, Zuilhof H, Vilan A, Kronik L, Kahn A, Cahen D. Phys. Rev. B, 2012, 85(4): 045433.
[46]
Neaton J B, Hybertsen M S, Louie S G. Phys. Rev. Lett., 2006, 97(21): 216405.
[47]
Fabre B, Li Y, Scheres L, Pujari S P, Zuilhof H. Angew. Chem. Int. Ed., 2013, 52(46): 12024.
[48]
Fabre B. Chem. Rev., 2016, 116(8): 4808.
[49]
Yang Z, Liu W, Zhao L, Yin D, Feng J, Li L, Guo X. Nat. Commun., 2023, 14(1): 552.
[50]
Henriksson A, Neubauer P, Birkholz M. Adv. Mater. Interfaces, 2021, 8(23).
[51]
McCreery R L. Chem. Rev., 2008, 108(7): 2646.
[52]
Renschler C L, Sylwester A P, Salgado L V. J. Mater. Res., 1989, 4(2): 452.
[53]
Chowdhury S, Jana D, Mookerjee A. Phys. E, 2015, 74: 347.
[54]
Chen P, McCreery R L. Anal. Chem., 1996, 68(22): 3958.
[55]
Athanasopoulos N, Kostopoulos V. Compos. Pt. B-Eng, 2014, 67: 244.
[56]
Morteza Najarian A, Szeto B, Tefashe U M, McCreery R L. ACS Nano, 2016, 10(9): 8918.
[57]
Tomidokoro M, Tunmee S, Rittihong U, Euaruksakul C, Supruangnet R, Nakajima H, Hirata Y, Ohtake N, Akasaka H. Materials, 2021, 14(9): 2355.
[58]
Ranganathan S, McCreery R, Majji S M, Madou M. J. Electrochem. Soc., 2000, 147(1): 277.
[59]
Compton R G, Foord J S, Marken F. Electroanal., 2003, 15(17): 1349.
[60]
Feldman A K, Steigerwald M L, Guo X, Nuckolls C. Acc. Chem. Res., 2008, 41(12): 1731.
[61]
Ranganathan S, Steidel I, Anariba F, McCreery R L. Nano Lett., 2001, 1(9): 491.
[62]
Ru J, Szeto B, Bonifas A, McCreery R L. ACS Appl. Mater. Interfaces, 2010, 2(12): 3693.
[63]
Song P, Guerin S, Tan S J R, Annadata H V, Yu X, Scully M, Han Y M, Roemer M, Loh K P, Thompson D, Nijhuis C A. Adv. Mater., 2018, 30(10).
[64]
Prins F, Barreiro A, Ruitenberg J W, Seldenthuis J S, Aliaga-Alcalde N, Vandersypen L M K, van der Zant H S J. Nano Lett., 2011, 11(11): 4607.
[65]
Sachan P, Mondal P C. Analyst, 2020, 145(5): 1563.
[66]
Yan H J, Bergren A J, McCreery R L. J. Am. Chem. Soc., 2011, 133(47): 19168.
[67]
Park S, Yoon H J. Nano Lett., 2018, 18(12): 7715.
[68]
Wan A, Jiang L, Sangeeth C S S, Nijhuis C A. Adv. Funct. Mater., 2014, 24(28): 4442.
[69]
Tsuji M, Saeki A, Koizumi Y, Matsuyama N, Vijayakumar C, Seki S. Adv. Funct. Mater., 2014, 24(1): 28.
[70]
Zhitenev N B, Jiang W R, Erbe A, Bao Z, Garfunkel E, Tennant D M, Cirelli R A. Nanotechnology, 2006, 17(5): 1272.
[71]
Sayed S Y, Fereiro J A, Yan H, McCreery R L, Bergren A J. Proc. Natl. Acad. Sci. U. S. A., 2012, 109(29): 11498.
[72]
Li T, Hauptmann J R, Wei Z, Petersen S, Bovet N, Vosch T, Nygard J, Hu W, Liu Y, Bjornholm T, Norgaard K, Laursen B W. Adv. Mater., 2012, 24(10): 1333.
[73]
Kühnel M, Petersen S V, Hviid R, Overgaard M H, Laursen B W, Nørgaard K. J. Phys. Chem. C, 2018, 122(18): 9731.
[74]
Karuppannan S K, Neoh E H L, Vilan A, Nijhuis C A. J. Am. Chem. Soc., 2020, 142(7): 3513.
[75]
Tefashe U M, Nguyen Q V, Najarian A M, Lafolet F, Lacroix J C, McCreery R L. J. Phys. Chem. C, 2018, 122(50): 29028.
[76]
Nguyen Q V, Tefashe U, Martin P, Della Rocca M L, Lafolet F, Lafarge P, McCreery R L, Lacroix J C. Adv. Electron. Mater., 2020, 6(7): 1901416.
[77]
Barraud C, Lemaitre M, Bonnet R, Rastikian J, Salhani C, Lau S, van Nguyen Q, Decorse P, Lacroix J C, Della Rocca M L, Lafarge P, Martin P. Nanoscale Adv., 2019, 1(1): 414.
[78]
Yan H, Bergren A J, McCreery R, Della Rocca M L, Martin P, Lafarge P, Lacroix J C. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(14): 5326.
[79]
Bayat A, Lacroix J C, McCreery R L. J. Am. Chem. Soc., 2016, 138(37): 12287.
[80]
Najarian A M, Bayat A, McCreery R L. J. Am. Chem. Soc., 2018, 140(5): 1900.
[81]
Saxena S K, Tefashe U M, McCreery R L. J. Am. Chem. Soc., 2020, 142(36): 15420.
[82]
Ivashenko O, Bergren A J, McCreery R L. J. Am. Chem. Soc., 2016, 138(3): 722.
[83]
Tefashe U M, Van Nguyen Q, Lafolet F, Lacroix J C, McCreery R L. J. Am. Chem. Soc., 2017, 139(22): 7436.
[84]
Ding X, Xue J, Ding S, Chen C, Wang X, Yu X, Hu W. Angew. Chem. Int. Ed., 2022, 61(44): e202208969.
[85]
Qi P F, Javey A, Rolandi M, Wang Q, Yenilmez E, Dai H J. J. Am. Chem. Soc., 2004, 126(38): 11774.
[86]
Whalley A C, Steigerwald M L, Guo X, Nuckolls C. J. Am. Chem. Soc., 2007, 129(42): 12590.
[87]
Guo X, Gorodetsky A A, Hone J, Barton J K, Nuckolls C. Nat. Nanotechnol., 2008, 3(3): 163.
[88]
Liu S, Clever G H, Takezawa Y, Kaneko M, Tanaka K, Guo X, Shionoya M. Angew. Chem. Int. Ed., 2011, 50(38): 8886.
[89]
Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B, Liu Z, Zhang G, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F. Science, 2016, 352(6292): 1443.
[90]
Zhao Y, Liu W Q, Zhao J Y, Wang Y S, Zheng J T, Liu J Y, Hong W J, Tian Z Q. Int. J. Extreme Manuf., 2022, 4(2): 022003.
[91]
Cao Y, Dong S, Liu S, He L, Gan L, Yu X, Steigerwald M L, Wu X, Liu Z, Guo X. Angew. Chem. Int. Ed., 2012, 51(49): 12228.
[92]
Tan Z, Zhang D, Tian H R, Wu Q, Hou S, Pi J, Sadeghi H, Tang Z, Yang Y, Liu J, Tan Y Z, Chen Z B, Shi J, Xiao Z, Lambert C, Xie S Y, Hong W J. Nat. Commun., 2019, 10(1): 1748.
[93]
Marquardt C W, Grunder S, Blaszczyk A, Dehm S, Hennrich F, Lohneysen H V, Mayor M, Krupke R. Nat. Nanotechnol., 2010, 5(12): 863.
[94]
Guo X, Small J P, Klare J E, Wang Y, Purewal M S, Tam I W, Hong B H, Caldwell R, Huang L, O'Brien S, Yan J, Breslow R, Wind S J, Hone J, Kim P, Nuckolls C. Science, 2006, 311(5759): 356.
[95]
Thiele C, Vieker H, Beyer A, Flavel B S, Hennrich F, Torres D M, Eaton T R, Mayor M, Kappes M M, Golzhauser A, Lohneysen H V, Krupke R. Appl. Phys. Lett., 2014, 104(10): 103102.
[96]
Caneva S, Gehring P, Garcia-Suarez V M, Garcia-Fuente A, Stefani D, Olavarria-Contreras I J, Ferrer J, Dekker C, van der Zant H S J. Nat. Nanotechnol., 2018, 13(12): 1126.
[97]
Zou Y L, Liang Q M, Lu T, Li Y G, Zhao S, Gao J, Yang Z X, Feng A, Shi J, Hong W, Tian Z Q, Yang Y. Sci. Adv., 2023, 9(6): eadf0425.
[98]
Meng L, Xin N, Hu C, Wang J, Gui B, Shi J, Wang C, Shen C, Zhang G, Guo H, Meng S, Guo X. Nat. Commun., 2019, 10(1): 1450.
[99]
Phan T L, Seo S, Cho Y, An Vu Q, Lee Y H, Duong D L, Lee H, Yu W J. Nat. Commun., 2022, 13(1): 4556.
[100]
Xin N, Li X, Jia C, Gong Y, Li M, Wang S, Zhang G, Yang J, Guo X. Angew. Chem. Int. Ed., 2018, 57(43): 14026.
[101]
Yan Z, Li X, Li Y, Jia C, Xin N, Li P, Meng L, Zhang M, Chen L, Yang J, Wang R, Guo X. Sci. Adv., 2022, 8(12): eabm3541.
[102]
Li Y, Yang C, Guo X. Acc Chem. Res., 2020, 53(1): 159.
[103]
Guo X, Whalley A, Klare J E, Huang L, O'Brien S, Steigerwald M, Nuckolls C. Nano Lett., 2007, 7(5): 1119.
[104]
Liu S, Zhang X, Luo W, Wang Z, Guo X, Steigerwald M L, Fang X. Angew. Chem. Int. Ed., 2011, 50(11): 2496.
[105]
Gehring P, Sadeghi H, Sangtarash S, Lau C S, Liu J, Ardavan A, Warner J H, Lambert C J, Briggs G A, Mol J A. Nano Lett., 2016, 16(7): 4210.
[106]
Yang C, Zhang L, Lu C, Zhou S, Li X, Li Y, Yang Y, Li Y, Liu Z, Yang J, Houk K N, Mo F, Guo X. Nat. Nanotechnol., 2021, 16(11): 1214.
[107]
Guan J, Jia C, Li Y, Liu Z, Wang J, Yang Z, Gu C, Su D, Houk K N, Zhang D, Guo X. Sci. Adv., 2018, 4(2): eaar2177.
[108]
Zhou C, Li X, Gong Z, Jia C, Lin Y, Gu C, He G, Zhong Y, Yang J, Guo X. Nat. Commun., 2018, 9(1): 807.
[109]
Zhang L, Yang C, Lu C, Li X, Guo Y, Zhang J, Lin J, Li Z, Jia C, Yang J, Houk K N, Mo F, Guo X. Nat. Commun., 2022, 13(1): 4552.

Funding

National Natural Science Foundation of China(21773169)
National Natural Science Foundation of China(21973069)
PDF(11040 KB)

Accesses

Citation

Detail

Sections
Recommended

/