Research Advances on High-Temperature Infrared Modification of Oxide Aerogels

Ruiming Huang, Yonggang Jiang, Fengqi Liu, Junzong Feng, Liangjun Li, Jian Feng

Prog Chem ›› 2024, Vol. 36 ›› Issue (2) : 234-243.

PDF(18082 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(18082 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (2) : 234-243. DOI: 10.7536/PC230623
14

Research Advances on High-Temperature Infrared Modification of Oxide Aerogels

Author information +
History +

Abstract

Oxide aerogel is a novel nano-porous material with ultra-low thermal conductivity. In particular, it can be used in spaceflight applications and other thermal management fields. Currently, with high infrared transmittance, most of the common pure oxide aerogels, such as silica and alumina, have no advantages in high-temperature insulation because of their intrinsic property. However, electromagnetic radiation in the near-infrared region is the main mode of heat conduction at high temperatures, accordingly, a large amount of electromagnetic radiation will pass through aerogel and lead to the rapid increase of thermal conductivity. Therefore, to meet the requirement of thermal insulation at higher temperature, it is necessary to reduce the radiative heat transfer. Based on the research status, this paper reviewed the main progress of improving high temperature insulation of oxide aerogel by adding opacifier, fiber and adjusting the structure and morphology. Moreover, the future research direction has prospected.

Contents

1 Introduction

2 Application of opacifiers in infrared modification of aerogels

2.1 TiO2 opacifier

2.2 SiC opacifier

2.3 Carbon materials opacifier

2.4 Other opacifier

3 Application of fiber in infrared modification of aerogels

3.1 Glass fiber

3.2 ZrO2 fiber

3.3 Mullite fiber

3.4 Modified fiber

4 Application of structure/morphology change in infrared modification of aerogels

4.1 Multiple-layer aerogel insulation materials

4.2 Lamellar aerogels

4.3 Nanofiber aerogels

5 Conclusion and outlook

Key words

oxide aerogel / infrared modification / composite material / high temperature insulation / opacifier / fiber

Cite this article

Download Citations
Ruiming Huang , Yonggang Jiang , Fengqi Liu , et al . Research Advances on High-Temperature Infrared Modification of Oxide Aerogels[J]. Progress in Chemistry. 2024, 36(2): 234-243 https://doi.org/10.7536/PC230623

References

[1]
Zhang S L, Li X, Zuo J Y, Qin J, Cheng K L, Feng Y, Bao W. Prog. Aerosp. Sci., 2020, 119: 100646.
[2]
Zhao S Y, Siqueira G, Drdova S, Norris D, Ubert C, Bonnin A, Galmarini S, Ganobjak M, Pan Z Y, Brunner S, Nyström G, Wang J, Koebel M M, Malfait W J. Nature, 2020, 584(7821): 387.
[3]
Chen L W, Gan L H. Chemistry, 1997,(8): 21.
陈龙武, 甘礼华. 化学通报, 1997,(8): 21.)
[4]
Liu F Q, Jiang Y G, Peng F, Feng J Z, Li L J, Feng J. Progress in Chemistry, 2022, 34(6): 1384.
(柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 化学进展, 2022, 34(6): 1384.)
[5]
Liu P F, Li X F, Min P, Chang X Y, Shu C, Ding Y, Yu Z Z. Nano Micro. Lett., 2021, 13(1): 22.
[6]
Xue T T, Fan W, Zhang X, Zhao X Y, Yang F, Liu T X. Compos. Part B Eng., 2021, 219: 108963.
[7]
Tang G H, Bi C, Zhao Y, Tao W Q. Energy, 2015, 90: 701.
[8]
Lu X, Arduini-Schuster M C, Kuhn J, Nilsson O, Fricke J, Pekala R W. Science, 1992, 255(5047): 971.
[9]
Lu X, Wang P, Arduini-Schuster M C, Kuhn J, Büttner D, Nilsson O, Heinemann U, Fricke J. J. Non Cryst. Solids, 1992, 145: 207.
[10]
Xie T, He Y L, Hu Z J. Int. J. Heat Mass Transf., 2013, 58(1/2): 540.
[11]
Wang S L, Jin Z, Li J N, Zhang B X, Wang Y B, Yang Y R, Wang X D, Lee D J. J. Taiwan Inst. Chem. Eng., 2021, 120: 150.
[12]
Kuhn J, Gleissner T, Arduini-Schuster M C, Korder S, Fricke J. J. Non Cryst. Solids, 1995, 186: 291.
[13]
Zhu Z X, Wang F, Yao H J, Dong J X, Long D H. J. Inorg. Mater., 2018, 33(9): 969.
(朱召贤, 王飞, 姚鸿俊, 董金鑫, 龙东辉. 无机材料学报, 2018, 33(9): 969.)
[14]
Wang W Q, Zhang Z H, Zu G Q, Shen J, Zou L P, Lian Y, Liu B, Zhang F. RSC Adv., 2014, 4(97): 54864.
[15]
Zou W B, Wang X D, Wu Y, Zou L P, Zu G Q, Chen D, Shen J. Ceram. Int., 2019, 45(1): 644.
[16]
Liu S J, Wu X D, Li Y H, Cui S, Shen X D, Tan G. Appl. Therm. Eng., 2021, 190: 116745.
[17]
Shi X, Zhang S C, Chen Y F, Li M Q, Ouyang S X, Peng X Y. Key Eng. Mater., 2010, 434/435: 689.
[18]
Pan Y W, Jin X Y, Wang H B, Huang H, Wu C, Yan X J, Hong C Q, Zhang X H. J. Mater. Sci. Technol., 2023, 152: 181.
[19]
Zhang R B, Hou X B, Ye C S, Wang B L. J. Alloys Compd., 2017, 699: 511.
[20]
Zhang H, Liu J L, Zhu S Z. J. Wuhan Univ. Technol. Mater Sci. Ed., 2022, 37(3): 324.
[21]
Lei Y S, Xu H Y, Dong D P, Xie R J. Cryog. Supercond., 2018, 46(11): 15.
(雷营生, 徐红艳, 董德平, 谢荣建. 低温与超导, 2018, 46(11): 15.)
[22]
Liu F Q, He C B, Jiang Y G, Yang Y P, Peng F, Liu L F, Men J, Feng J Z, Li L J, Tang G H, Feng J. Chem. Eng. J., 2023, 455: 140502.
[23]
Liang X P, Shao Z J, Wu Z, Wang J Y. Ceram. Int., 2022, 48(15): 22213.
[24]
Feng J P, Chen D P, Ni W, Yang S Q, Hu Z J. J. Non Cryst. Solids, 2010, 356(9/10): 480.
[25]
Sun D K. Masteral Dissertation of Chang’an University, 2012.
(孙登科. 长安大学硕士论文, 2012.)
[26]
Xu H F, Huang Y D, Zhang H J, Chen Q Y, Yan G W, Liu L. J. Non Cryst. Solids, 2012, 358(21): 2922.
[27]
Cargnello M, Gordon T R, Murray C B. Chem. Rev., 2014, 114(19): 9319.
[28]
Wang J, Kuhn J, Lu X. J. Non Cryst. Solids, 1995, 186: 296.
[29]
Liu G W, Liu Y G. Key Eng. Mater., 2016, 723: 492.
[30]
Zhang R B, Gu H T, Hou X B, Zhou P. J. Porous Mater., 2021, 28(1): 57.
[31]
Yang H X, Ye F. RSC Adv., 2022, 12(19): 12226.
[32]
Ouyang D G, Hu T S, Luo A Z, Zhao X J. Res. Iron Steel, 2002, 30(1): 40.
(欧阳德刚, 胡铁山, 罗安智, 赵修建. 钢铁研究, 2002, 30(1): 40.)
[33]
Zhang H, Ma Y X, Wang X, Ji W T, Li Y M, Tao W Q. J. Eng. Thermophys., 2018, 39(5): 1039.
(张虎, 马奕新, 王娴, 冀文涛, 李跃明, 陶文铨. 工程热物理学报, 2018, 39(5): 1039.)
[34]
Pang H Q, Li Z Y. Int. J. Therm. Sci., 2021, 160: 106681.
[35]
Wang Y T, Chu C Y, Duan C Q, Dong J J, Chen H, Ying S T, Guo J J, Xu G J, Hu F, Cheng Y C, Sun A H. J. Non Cryst. Solids, 2023, 608: 122251.
[36]
Zeng S Q, Hunt A, Greif R. J. Non Cryst. Solids, 1995, 186: 271.
[37]
Zhao Y, Tang G H, Tao W Q. J. Eng. Thermophys., 2015, 36(3): 591.
赵越, 唐桂华, 陶文铨. 工程热物理学报, 2015, 36(3): 591.)
[38]
Zhu J Y, Ren H B, Bi Y T. J. Porous Mater., 2018, 25(6): 1697.
[39]
Jiang D P, Qin J, Zhou X F, Li Q L, Yi D Q, Wang B. Ceram. Int., 2022, 48(11): 16290.
[40]
Lamy-Mendes A, Girão A V, Silva R F, Durães L. Microporous Mesoporous Mater., 2019, 288: 109575.
[41]
Parale V G, Jung H N R, Han W, Lee K Y, Mahadik D B, Cho H H, Park H H. J. Alloys Compd., 2017, 727: 871.
[42]
Soorbaghi F P, Kokabi M, Bahramian A R. Int. J. Heat Mass Transf., 2019, 136: 899.
[43]
Qin Y Q, Jiang Y G, Feng J, Feng J Z, Yue C W. Mater. Rep., 2015(11): 129.
秦艳青, 姜勇刚, 冯坚, 冯军宗, 岳晨午. 材料导报, 2015(11): 129.
[44]
Gan X Z. Doctoral Dissertation of Shandong University, 2018.
(甘信柱. 山东大学博士论文, 2018.)
[45]
Guo J F, Tang G H, Feng J, Jiang Y G, Feng J Z. Int. J. Heat Mass Transf., 2020, 160: 120194.
[46]
Zhu Z X, Yao H J, Wang F, Dong J X, Wu K D, Cao J X, Long D H. Macromol. Mater. Eng., 2019, 304(5): 1800676.
[47]
Zhao J J, Duan Y Y, Wang X D, Wang B X. J. Non Cryst. Solids, 2012, 358(10): 1303.
[48]
Jiang Y G, Feng J Z, Feng J. J. Sol Gel Sci. Technol., 2017, 83(1): 64.
[49]
He J, Zhao H Y, Li X L, Su D, Ji H M, Yu H J, Hu Z P. Ceram. Int., 2018, 44(8): 8742.
[50]
Zhang R B, Ye C S, Wang B L. J. Porous Mater., 2018, 25(1): 171.
[51]
Feng J, Gao Q F, Feng J Z, Jiang Y G. J. Natl. Univ. Def. Technol., 2010, 32(1): 40.
(冯坚, 高庆福, 冯军宗, 姜勇刚. 国防科技大学学报, 2010, 32(1): 40.)
[52]
He J, Li X L, Su D, Ji H M, Wang X J. J. Eur. Ceram. Soc., 2016, 36(6): 1487.
[53]
Liu B X, Gao M, Liu X C, Zhao X F, Zhang J, Yi X B. ACS Appl. Nano Mater., 2019, 2(11): 7299.
[54]
Peng F, Jiang Y G, Feng J, Cai H F, Feng J Z, Li L J. Chem. Eng. J., 2021, 411: 128402.
[55]
Peng F, Jiang Y G, Feng J, Liu F Q, Feng J Z, Li L J. J. Eur. Ceram. Soc., 2022, 42(14): 6684.
[56]
Liu F Q, Jiang Y G, Peng F, Feng J Z, Li L J, Feng J. Chem. Eng. J., 2023, 461: 141721.
[57]
Yu H J, Tong Z W, Zhang B J, Chen Z W, Li X L, Su D, Ji H M. Chem. Eng. J., 2021, 418: 129342.
[58]
Xu L, Jiang Y G, Feng J Z, Feng J, Yue C W. Ceram. Int., 2015, 41(1): 437.
[59]
Zhang B J, Liu Y, Wu Q X, Zhou M, Su D, Ji H M, Li X L. J. Eur. Ceram. Soc., 2022, 42(13): 5995.
[60]
Ding W, Li H Y, Liu H L, Li Q, Wu Y W. J. Eur. Ceram. Soc., 2022, 42(13): 5438.
[61]
Gan X Z, Xu D, Lv Y D. Mater. Chem. Phys., 2020, 251: 123111.
[62]
Ma D H, Zhu L Y, Liu B X. Ceram. Int., 2020, 46(3): 3400.
[63]
Wang M, Feng J Z, Jiang Y G, Zhang Z M, Feng J. Mater. Rep., 2016(A2): 461.
(王苗, 冯军宗, 姜勇刚, 张忠明, 冯坚. 材料导报, 2016(A2): 461.)
[64]
Sheng C, Yu Y, Yu Y, Mi L, Tang G C, Song L X. J. Inorg. Mater., 2013, 28(7): 790-794.
[65]
Wang M, Feng J Z, Jiang Y G, Zhang Z M, Feng J. Heat Mass Transf., 2018, 54(9): 2793.
[66]
Li J, Zhang F, Zhang L J, Li W J, Zhao Y M. Transactions of Beijing Institute of Technology, 2019, 39(10):1051.
(李健, 张凡, 张丽娟, 李文静, 赵英民. 北京理工大学学报, 2019, 39(10): 1051.)
[67]
Zhu Z. Masteral Dissertation of Harbin Institute of Technology, 2021.
(朱振. 哈尔滨工业大学硕士论文, 2021.)
[68]
Ji Q Y, Zhang L, Jiao X L, Chen D R. ACS Appl. Mater. Interfaces, 2023, 15(5): 6848.
[69]
Zhang X X, Wang F, Dou L Y, Cheng X T, Si Y, Yu J Y, Ding B. ACS Nano, 2020, 14(11): 15616.
[70]
Zhang X X, Cheng X T, Si Y, Yu J Y, Ding B. Chem. Eng. J., 2022, 433: 133628.
[71]
Liu F Q, Jiang Y G, Feng J Z, Li L J, Feng J. Ceram. Int., 2023, 10.1016/j.ceramint.2023.03.174.

Funding

Hunan Province Key R&D Plan(2022GK2027)
Natural Science Foundation of Hunan Province(2023JJ30632)
National Key Research and Development Program of China(2022YFC2204403)
PDF(18082 KB)

Accesses

Citation

Detail

Sections
Recommended

/