Polymer Single Crystal: From Crystallization Strategy to Functionalized Application

Tianyu Wu, Haozhe Huang, Junhao Wang, Haoyang Luo, Jun Xu, Haimu Ye

Prog Chem ›› 2023, Vol. 35 ›› Issue (12) : 1727-1751.

PDF(29233 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(29233 KB)
Prog Chem ›› 2023, Vol. 35 ›› Issue (12) : 1727-1751. DOI: 10.7536/PC230702
Review

Polymer Single Crystal: From Crystallization Strategy to Functionalized Application

Author information +
History +

Abstract

In the 100 years since the birth of modern polymer science, polymer chemistry, polymer physics and polymer processing have developed rapidly and formed a more complete body of discipline. As an important part of polymer physics, polymer crystallography focuses on the microscopic crystallization process and reveals the unique behavior of polymer chains. Polymer crystals can be divided into single crystals and polycrystals according to the number of nuclei in an independence structure. Among them, polymer single crystals have closely arranged molecular chains and exhibit perfect geometrical symmetry in macroscopic morphology, with excellent mechanical and optoelectronic properties. However, due to the complexity of molecular chain movement, the formation of polymer single crystals is still very difficult. For decades, a large number of scientists have devoted themselves to the study of polymer single crystals and obtained abundant results. In this paper, we focus on the history and progress of polymer single crystal research, and carefully discuss the crystallization strategies of polymer single crystals and their functionalization applications, hoping to provide effective help to relevant researchers.

Key words

polymer single crystal / crystallization strategy / functionalized application

Cite this article

Download Citations
Tianyu Wu , Haozhe Huang , Junhao Wang , et al . Polymer Single Crystal: From Crystallization Strategy to Functionalized Application[J]. Progress in Chemistry. 2023, 35(12): 1727-1751 https://doi.org/10.7536/PC230702

References

[1]
Staudinger H. A Source Book in Chemistry, 1900-1950, Henry M(Ed.). England: Harvard University Press, 1968. 259-264.
[2]
Frey H, Johann T. Polym. Chem., 2020, 11(1): 8.
[3]
Till P H Jr. J. Polym. Sci., 1957, 24(106): 301.
[4]
Keller A. Philos. Mag., 1957, 2(21): 1171.
[5]
Fischer E W. Z. Für Naturforschung A, 1957, 12(9): 753.
[6]
Flory P J. Principles of Polymer Chemistry. Ithaca: Cornell University Press, 1953.
[7]
Stack G M, Mandelkern L, Voigt-Martin I G. Polym. Bull., 1982, 8(9-10): 421.
[8]
Tanabe Y, Strobl G R, Fischer E W. Polymer, 1986, 27(8): 1147.
[9]
Roe R, Gieniewski C, Vadimsky R G. J. Polym. Sci. B, 1973, 11: 1653.
[10]
(a) Xu J J, Ma Y, Hu W B, Rehahn M, Reiter G. Nat. Mater., 2009, 8(4): 348;
(b) Ren J, Ma A, Li J, Jiang X, Ma Y, Toda A, Hu W. Eur. Phys. J. E, 2010, 33: 189.
[11]
Flory P J. J. Chem. Phys., 2004, 17 (3):223.
[12]
Zhang S J, Han J R, Gao Y, Guo B H, Reiter G, Xu J. Macromolecules, 2019, 52(19): 7439.
[13]
Zhang S J, Guo B H, Reiter G, Xu J. Macromolecules, 2020, 53(9): 3482.
[14]
Wang Z Q, Duan R L, Pang X A, Wu R L, Guo B H, Xu J. Macromolecules, 2023, 56(3): 999.
[15]
Wunderlich B, Melillo L, Cormier C M, Davidson T, Snyder G. J. Macromol. Sci. B, 1967, 1(3): 485.
[16]
Bennett R. In Perrys Chemical Engineers Handbook, 6th ed. New York: McGraw-Hill, 1984. 25-40.
[17]
Myerson A. Handbook of Industrial Crystallization, Butterworth-Heinemann, 2002.
[18]
Rånby B G, Noe R W. J. Polym. Sci., 1961, 51(155): 337.
[19]
Storks K H. J. Am. Chem. Soc., 1938, 60(8): 1753.
[20]
Jaccodine R. Nature, 1955, 176(4476): 305.
[21]
Lauritzen Jr J I, Hoffman JD. Journal of Research of the National Bureau of Standards: Physics and chemistry. Section A, 1959, 63.
[22]
Hu W B, FrenkelD. Macromolecules, 2004, 37(12): 4336.
[23]
Zhou Y J, Hu W B. J. Phys. Chem. B, 2013, 117(10): 3047.
[24]
Keller A. Rep. Prog. Phys., 1968, 31(2): 623.
[25]
Holland V F, Miller R L. J. Appl. Phys., 1964, 35(11): 3241.
[26]
Patel G N, Patel RD. J. Polym. Sci. A-2 Polym. Phys., 1970, 8(1): 47.
[27]
Buleon A, Duprat F, Booy F, Chanzy H. Carbohydr. Polym., 1984, 4(3): 161.
[28]
Bu H H, Chen E Q, Xu S Y, Guo K X, Wunderlich B. Journal of Polymer Science Part B: Polymer Physics, 1994, 32 (8):1351.
[29]
Liu L Z, Su F Y, Zhu H S, Li H, Zhou E L, Yan R F, Qian R Y. J. Macromol. Sci. B, 1997, 36(2): 195.
[30]
Sun L, Zhu L, Ge Q, Quirk R P, Xue C C, Cheng S ZD, Hsiao B S, Avila-Orta C A, Sics I, Cantino M E. Polymer, 2004, 45(9): 2931.
[31]
Su M, Huang H Y, Ma X J, Wang Q A, Su Z H. Macromol. Rapid Commun., 2013, 34(13): 1067.
[32]
Hong Y L, Miyoshi T. ACS Macro Lett., 2014, 3(6): 556.
[33]
Hong Y L, Yuan S C, Li Z, Ke Y T, Nozaki K, Miyoshi T. Phys. Rev. Lett., 2015, 115(16): 168301.
[34]
Wang S J, Yuan S C, Chen W, Zhou Y, Hong Y L, Miyoshi T. Macromolecules, 2018, 51(21): 8729.
[35]
Lotz B, Lovinger A J, Cais R E. Macromolecules, 1988, 21(8): 2375.
[36]
Mehta R, Keawwattana W, Guenthner A L, Kyu T. Phys. Rev. E, 2004, 69(6): 061802.
[37]
Calvert P. J. Macromol. Sci., 1980, 14(2): 201.
[38]
Bank M I, Krimm S. J. Polym. Sci. A-2 Polym. Phys., 1969, 7(10): 1785.
[39]
Geil P H. Polymer single crystals. Krieger Publishing Company, 1963. 5.
[40]
Hoffman J. Soc. Plastics Engrs. Trans., 1964, 4 (1).
[41]
Wunderlich B. Macromolecular Physics. New York: Academic Press, 1973.
[42]
Wang Z G, Hsiao B S, Sirota E B, Agarwal P, Srinivas S. Macromolecules, 2000, 33(3): 978.
[43]
Manabe N, Yokota Y, Minami H, Uegomori Y, Komoto T. J. Electron Microsc., 2002, 51(1): 11.
[44]
D’Ilario L, Martinelli A, Piozzi A. J. Macromol. Sci. B, 2002, 41(1): 47.
[45]
Symons N K J. J. Polym. Sci. A Gen. Pap., 1963, 1(9): 2843.
[46]
Kovacs A J, Gonthier A. Kolloid-Z.u.Z.Polymere, 1972, 250(5): 530.
[47]
Toda A, Keller A. Colloid Polym. Sci., 1993, 271(4): 328.
[48]
Liu J, Geil P H. J. Macromol. Sci. B, 1997, 36(1): 61.
[49]
Zhang B, YangD C, Yan S K. J. Polym. Sci. B, 2002, 40(23): 2641.
[50]
Toda A, Okamura M, Hikosaka M, Nakagawa Y. Polymer, 2005, 46(20): 8708.
[51]
LippitsD R, Rastogi S, Höhne G W H, Mezari B, Magusin P C M M. Macromolecules, 2007, 40(4): 1004.
[52]
Núñez E, Vancso G J, Gedde U W. J. Macromol. Sci. B, 2008, 47(3): 589.
[53]
Welch P, Muthukumar M. Phys. Rev. Lett., 2001, 87 (21):218302.
[54]
Lorenzo A T, Müller A J. J. Polym. Sci. B, 2008, 46(14): 1478.
[55]
Wu T Y, Pfohl T, Chandran S, Sommer M, Reiter G. Macromolecules, 2020, 53 (19): 8303.
[56]
Rubinstein M, Colby R H. Polymer Physics. New York: Oxford University Press, 2003. Vol.23.
[57]
Thanh N T K, MacLean N, Mahiddine S. Chem. Rev., 2014, 114 (15):7610.
[58]
Menczel J, Varga J. J. Therm. Anal., 1983, 28(1): 161.
[59]
Xu J, Reiter G, Alamo R. Crystals, 2021, 11(3): 304.
[60]
Zhang B, Chen J B, Baier M C, Mecking S, Reiter R, Mülhaupt R, Reiter G. Macromol. Rapid Commun., 2015, 36(2): 180.
[61]
Agbolaghi S, Abbaspoor S, Abbasi F. Prog. Polym. Sci., 2018, 81: 22.
[62]
Wang G, Harrison I R. Thermochim. Acta, 1994, 231: 203.
[63]
Rastogi S, LippitsD R, Peters G W M, Graf R, Yao Y F, Spiess H W. Nat. Mater., 2005, 4(8): 635.
[64]
BlundellD J, Keller A. J. Macromol. Sci. B, 1968, 2(2): 301.
[65]
Waddon A J, Hill M J, Keller A, BlundellD J. J. Mater. Sci., 1987, 22(5): 1773.
[66]
Chung J S, Cebe P. Polymer, 1992, 33(8): 1594.
[67]
Ivanov Y M. J. Cryst. Growth, 1998, 194(3-4): 309.
[68]
Xu J J, Ma Y, Hu W B, Rehahn M, Reiter G. Nat. Mater., 2009, 8(4): 348.
[69]
Reiter G. Chem. Soc. Rev., 2014, 43(7): 2055.
[70]
Wang B H, Tang S H, Wang Y, Shen C Y, Reiter R, Reiter G, Chen J B, Zhang B. Macromolecules, 2018, 51(5): 1626.
[71]
Müller A J, Hernández Z H, Arnal M L, Sánchez J J. Polym. Bull., 1997, 39(4): 465.
[72]
Michell R M, Mugica A, Zubitur M, Müller A J. Polymer Crystallization I. Cham: Springer International Publishing, 2015. 215.
[73]
Balzano L, Rastogi S, Peters G. Macromolecules, 2011, 44(8): 2926.
[74]
Alfonso G C, Russell T P. Macromolecules, 1986, 19(4): 1143.
[75]
Mayes A M. Macromolecules, 1994, 27(11): 3114.
[76]
Cadek M, Coleman J N, Barron V, Hedicke K, Blau W J. Appl. Phys. Lett., 2002, 81(27): 5123.
[77]
Butté R, Carlin J F, Feltin E, Gonschorek M, Nicolay S, Christmann G, SimeonovD, Castiglia A, Dorsaz J, Buehlmann H J, Christopoulos S, Baldassarri Höger von Hög G, Grundy A JD, Mosca M, Pinquier C, Py M A, Demangeot F, Frandon J, Lagoudakis P G, Baumberg J J, Grandjean N. J. Phys.D: Appl. Phys., 2007, 40(20): 6328.
[78]
Zhou H X, Jiang SD, Yan S K. J. Phys. Chem. B, 2011, 115(46): 13449.
[79]
Li Y P, Guo Z X, Xue M L, Yan S K. Macromolecules, 2019, 52(11): 4232.
[80]
Wang Y, Yan L T, Dastafkan K, Zhao C A, Zhao X B, Xue Y Y, Huo J M, Li S N, Zhai Q G. Adv. Mater., 2022, 34(7): 2006351.
[81]
Koutsky J A, Walton A G, Baer E. J. Polym. Sci. A-2 Polym. Phys., 1966, 4(4): 611.
[82]
Wellinghoff S, Rybnikar F, Baer E. J. Macromol. Sci. B, 2006, 10(1): 1.
[83]
Wittmann J C, Lotz B. J. Polym. Sci. Polym. Phys. Ed., 1981, 19(12): 1837.
[84]
Wittmann J C, Hodge A M, Lotz B. J. Polym. Sci. Polym. Phys. Ed., 1983, 21(12): 2495.
[85]
Wittmann J C, Lotz B. J. Polym. Sci. Polym. Phys. Ed., 1985, 23(1): 205.
[86]
Wittmann J C, Lotz B. Prog. Polym. Sci., 1990, 15(6): 909.
[87]
Stocker W, Schumacher M, Graff S, Thierry A, Wittmann J C, Lotz B. Macromolecules, 1998, 31(3): 807.
[88]
Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B. Polymer, 2000, 41(25): 8909.
[89]
Sun Y J, Li H H, Huang Y, Chen E Q, Zhao L F, Gan Z H, Yan S K. Macromolecules, 2005, 38(7): 2739.
[90]
Liu J, Wang J J, Li H H, ShenD Y, Zhang J M, Ozaki Y, Yan S K. J. Phys. Chem. B, 2006, 110(2): 738.
[91]
BowerD I, Solis F J. Am. J. Phys., 2003, 71(3): 285.
[92]
Stamm M. Macromol. Chem. Phys., 2006, 207(8): 787.
[93]
Mandelkern L. Crystallization of Polymers. 2nd ed. Cambridge, UK: Cambridge University Press, 2004.
[94]
Tadokoro H. Structure of Crystalline Polymers. Krieger Publishing Company, 1990..
[95]
Fried J. Polymer Science & Technology. Pearson Education, 2014.
[96]
Wu T Y, Valencia L, Pfohl T, Heck B, Reiter G, Lutz P J, Mülhaupt R. Macromolecules, 2019, 52(13): 4839.
[97]
Somorjai G A, JepsenD W. J. Chem. Phys., 1964, 41(5): 1394.
[98]
Byun M, Laskowski R L, He M, Qiu F, Jeffries-EL M, Lin Z Q. Soft Matter, 2009, 5(8): 1583.
[99]
Qi H, Zhou H, Tang Q Y, Lee J Y, Fan Z Y, Kim S, Staub M C, Zhou T A, Mei S, Han L, PochanD J, Cheng H, Hu W B, Li C Y. Nat. Commun., 2018, 9: 3005.
[100]
Chen J T, Lee C W, Chi M H, Yao I C. Macromol. Rapid Commun., 2013, 34(4): 285.
[101]
Sinturel C, Vayer M, Morris M, Hillmyer M A. Macromolecules, 2013, 46(14): 5399.
[102]
McPherson A, Gavira J A. Acta Crystallogr. Sect. F Struct. Biol. Commun., 2014, 70(1): 2.
[103]
Mansky P, Haikin P, Thomas E L. J. Mater. Sci., 1995, 30(8): 1987.
[104]
Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y. Adv. Funct. Mater., 2007, 17(10): 1636.
[105]
McAfee S M, Payne A J, Hendsbee AD, Xu S T, Zou Y P, Welch G C. Sol. RRL, 2018, 2(9): 1800143.
[106]
Wu T Y, Chandran S, Zhang Y, Zheng T Z, Pfohl T, Xu J, Reiter G. Macromolecules, 2022, 55(8): 3325.
[107]
Diao Y, Shaw L, Bao Z N, Mannsfeld S C B. Energy Environ. Sci., 2014, 7(7): 2145.
[108]
Gu XD, Shaw L, Gu K, Toney M F, Bao Z N. Nat. Commun., 2018, 9: 534.
[109]
Patel B B, Diao Y. Nanotechnology, 2018, 29(4): 044004.
[110]
Sele C W, Charlotte Kjellander B K, Niesen B, Thornton M J, van der Putten J B P H, Myny K, Wondergem H J, Moser A, Resel R, van Breemen A J J M, van Aerle N, Heremans P, Anthony J E, Gelinck G H. Adv. Mater., 2009, 21(48): 4926.
[111]
Rogowski R Z, Darhuber A A. Langmuir, 2010, 26(13): 11485.
[112]
Zhang K, Marszalek T, Wucher P, Wang Z Y, Veith L, Lu H, Räder H J, Beaujuge P M, Blom P W M, Pisula W. Adv. Funct. Mater., 2018, 28(50): 1805594.
[113]
Gans A, Dressaire E, Colnet B, Saingier G, Bazant M Z, Sauret A. Soft Matter, 2019, 15(2): 252.
[114]
GrossoD. J. Mater. Chem., 2011, 21(43): 17033.
[115]
Giri G, Verploegen E, Mannsfeld S C B, Atahan-Evrenk S, KimD H, Lee S Y, Becerril H A, Aspuru-Guzik A, Toney M F, Bao Z N. Nature, 2011, 480(7378): 504.
[116]
Haase K, Zessin J, Zoumboulis K, Müller M, Hambsch M, Mannsfeld S C B. Adv. Electron. Mater., 2019, 5(6):1900067.
[117]
Lu Z J, Wang C Q, Deng W, Achille M T, Jie J S, Zhang X J. J. Mater. Chem. C, 2020, 8(27): 9133.
[118]
Galindo S, Tamayo A, Leonardi F, Mas-Torrent M. Adv. Funct. Mater., 2017, 27(25): 1700526.
[119]
Tamayo A, Riera-Galindo S, Jones A O F, Resel R, Mas-Torrent M. Adv. Mater. Interfaces, 2019, 6(22): 1900950.
[120]
Gao X A, Han Y C. Chin. J. Polym. Sci., 2013, 31(4): 610.
[121]
Zhang K, Wang Z Y, Marszalek T, Borkowski M, Fytas G, Blom P W M, Pisula W. Mater. Horiz., 2020, 7(6): 1631.
[122]
Michels J J, Zhang K, Wucher P, Beaujuge P M, Pisula W, Marszalek T. Nat. Mater., 2021, 20(1): 68.
[123]
Gu XD, Shaw L, Gu K, Toney M F, Bao Z N. Nat. Commun., 2018, 9: 534.
[124]
BurkittD, Greenwood P, Hooper K, RichardsD, Stoichkov V, BeynonD, Jewell E, Watson T. MRS Adv., 2019, 4(24): 1399.
[125]
Hema K, Ravi A, Raju C, Pathan J R, Rai R, Sureshan K M. Chem. Soc. Rev., 2021, 50(6): 4062.
[126]
Hu F, Hao W B, MückeD, Pan Q Y, Li Z B, Qi H Y, Zhao Y J. J. Am. Chem. Soc., 2021, 143(15): 5636.
[127]
Sun C Y, Oppenheim J J, Skorupskii G, Yang L M, Dincă M. Chem, 2022, 8(12): 3215.
[128]
Hema K, Raju C, Bhandary S, Sureshan K M. Angew. Chem. Int. Ed., 2022, 61(40): e202210733.
[129]
Liu Y, Guan X R, WangD C, Stoddart J F, Guo Q H. J. Am. Chem. Soc., 2023, 145(24): 13223.
[130]
Price F P. J. Polym. Sci., 1959, 37(131): 71.
[131]
Olley R H, BassettD C. Polymer, 1989, 30(3): 399.
[132]
Li L, Chan C M, Yeung K L, Li J X, Ng K M, Lei Y G. Macromolecules, 2001, 34(2): 316.
[133]
Tanaka H, Nishi T. Phys. Rev. A, 1989, 39(2): 783.
[134]
Kurz W, FisherD J. Acta Metall., 1981, 29(1): 11.
[135]
Seiler M. Chem. Eng. Technol., 2002, 25(3): 237.
[136]
Rosso M, Brissot C, Teyssot A, Dollé M, Sannier L, Tarascon J M, Bouchet R, Lascaud S. Electrochim. Acta, 2006, 51(25): 5334.
[137]
Wunderlich B, Mielillo L. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1968, 118 (1): 250.
[138]
Hikosaka M. Polymer, 1987, 28(8): 1257.
[139]
Hikosaka M. Polymer, 1990, 31(3): 458.
[140]
Yan L, Häußler M, Bauer J, Mecking S, Winey K I. Macromolecules, 2019, 52(13): 4949.
[141]
Hill M J, Keller A. J. Macromol. Sci. B, 1969, 3(1): 153.
[142]
Peterlin A. Int. J. Fract., 1975, 11(5): 761.
[143]
Zhang J, Li J, Han Y. Macromol. Rapid Commun., 2004, 25 (11): 1105.
[144]
Hobbs J K, Miles M J. Macromolecules, 2001, 34(3): 353.
[145]
Kimata S, Sakurai T, Nozue Y, Kasahara T, Yamaguchi N, Karino T, Shibayama M, Kornfield J A. Science, 2007, 316(5827): 1014.
[146]
Somani R H, Yang L, Zhu L, Hsiao B S. Polymer, 2005, 46(20): 8587.
[147]
Hsiao B S, Yang L, Somani R H, Avila-Orta C A, Zhu L. Phys. Rev. Lett., 2005, 94(11): 117802.
[148]
Goodwyn M. Ghost Worlds: A Guide to Poltergeists, Portals, Ecto-Mist, & Spirit Behavior. Llewellyn Worldwide, 2011.
[149]
Deng J A, Xu Y X, Liu L Q, Feng C F, Tang J A, Gao Y, Wang Y, Yang B, Lu P, Yang W S, Ma Y G. Chem. Commun., 2016, 52(11): 2370.
[150]
Wang B B, Li B, Zhao B, Li C Y. J. Am. Chem. Soc., 2008, 130(35): 11594.
[151]
Li B, Li C Y. Journal of the ACS, 2006, 129 (1):12.
[152]
Li B, Ni C Y, Li C Y. Macromolecules, 2008, 41(1): 149.
[153]
Li B, Wang B B, Ferrier R C M Jr, Li C Y. Macromolecules, 2009, 42(24): 9394.
[154]
Wang B B, Dong B, Li B, Zhao B, Li C Y. Polymer, 2010, 51(21): 4814.
[155]
Xu L A, Li H, Jiang X, Wang J X, Li L, Song Y L, Jiang L. Macromol. Rapid Commun., 2010, 31(16): 169.
[156]
Zhang H, Dong B, Zhou T A, Li C Y. Nanoscale, 2012, 4(24): 7641.
[157]
Zhou T A, Wang B B, Dong B, Li C Y. Macromolecules, 2012, 45(21): 8780.
[158]
Dong B, Zhou T A, Zhang H, Li C Y. ACS Nano, 2013, 7(6): 5192.
[159]
Liu M, Liu L M, Gao W L, Su MD, Ge Y, Shi L L, Zhang H, Dong B, Li C Y. Nanoscale, 2014, 6(15): 8601.
[160]
Zhou T A, Dong B, Qi H, Lau H K, Li C Y. Nanoscale, 2014, 6(9): 4551.
[161]
Zhang H, Liu M, Zhou T A, Dong B, Li C Y. Nanoscale, 2015, 7(25): 11033.
[162]
Mei S, Qi H, Zhou T A, Li C Y. Angew. Chem. Int. Ed., 2017, 56(44): 13645.
[163]
Mei S, Li C Y. Angew. Chem. Int. Ed., 2018, 57(48): 15758.
[164]
Dong B, Li B, Li C Y. J. Mater. Chem., 2011, 21(35): 13155.
[165]
Zhou T A, Qi H, Han L, BarbashD, Li C Y. Nat. Commun., 2016, 7: 11119.
[166]
Mei S, Wilk J T, Chancellor A J, Zhao B, Li C Y. Macromol. Rapid Commun., 2020, 41(15): 2000228.
[167]
AllaraD L. Biosens. Bioelectron., 1995, 10(9-10): 771.
[168]
Ji H F, Dabestani R, Brown G M, Britt P F. Chem. Commun., 2000,(6): 457.
[169]
Schreiber F. Prog. Surf. Sci., 2000, 65(5-8): 151.
[170]
Schoenbaum C A, SchwartzD K, Medlin J W. Acc. Chem. Res., 2014, 47(4): 1438.
[171]
Zhou T A, Qi H, Han L, BarbashD, Li C Y. Nat. Commun., 2016, 7: 11119.
[172]
Mei S, Wilk J T, Chancellor A J, Zhao B, Li C Y. Macromol. Rapid Commun., 2020, 41(15): e2000228.
[173]
McGehee M D, Heeger A J. Adv.Mater., 2000, 12 (22): 1655.
[174]
Heeger A. Chem.Soc.Rev., 2010, 39 (7):2354.
[175]
Heeger A J, Kivelson S, Schrieffer J R, Su W P. Rev. Mod. Phys., 1988, 60(3): 781.
[176]
MacDiarmid A G, Chiang J C, Richter A F, Epstein A J. Synth. Met., 1987, 18(1-3): 285.
[177]
MacDiarmid A G, Chiang J C, Halpern M, Huang W S, Mu S L, Nanaxakkara LD, Wu S W, Yaniger S I. Mol. Cryst. Liq. Cryst., 1985, 121(1/4): 173.
[178]
MacDiarmid A G. Rev.Mod.Phys. 2001, 40 (14): 2581.
[179]
Shirakawa H, Louis E, MacDiarmid A, Chiang C K, Heeger A J. Chem.Commun., 1977, (16): 578.
[180]
Shirakawa H, McDiarmid A, Heeger A. Chem.Commun., 2003, 2003 (1): 1.
[181]
Shirakawa H, Ito T, Ikeda S. Makromol. Chem., 1978, 179 (6):1565.
[182]
Dai C H, Liu B. Energy Environ. Sci., 2020, 13(1): 24.
[183]
Feng L H, Zhu C L, Yuan H X, Liu L B, Lv F T, Wang S. Chem. Soc. Rev., 2013, 42(16): 6620.
[184]
Guo X, Baumgarten M, Müllen K. Prog. Polym. Sci., 2013, 38(12): 1832.
[185]
Inal S, Rivnay J, Suiu A O, Malliaras G G, McCulloch I. Acc. Chem. Res., 2018, 51(6): 1368.
[186]
Melling D, Martinez J G, Jager E W H. Adv. Mater., 2019, 31(22): 1808210.
[187]
Qiu Z J, Hammer B A G, Müllen K. Prog. Polym. Sci., 2020, 100: 101179.
[188]
Tuncel D, Demir H V. Nanoscale, 2010, 2(4): 484.
[189]
Vahdatiyekta P, Zniber M, Bobacka J, Huynh T P. Anal. Chim. Acta, 2022, 1221: 340114.
[190]
Wang S H, Zuo G Z, Kim J, Sirringhaus H. Prog. Polym. Sci., 2022, 129: 101548.
[191]
Xu Y, Cui Y, Yao H F, Zhang T, Zhang J Q, Ma L J, Wang J W, Wei Z X, Hou J H. Adv. Mater., 2021, 33(22): e2101090.
[192]
Bruner C, Novoa F, Dupont S, Dauskardt R. ACS Appl. Mater. Interfaces, 2014, 6(23): 21474.
[193]
Kim J S, Lee J H, Park J H, Shim C, Sim M, Cho K. Adv. Funct. Mater., 2011, 21(3): 480.
[194]
Kim M, Jo S B, Park J H, Cho K. Nano Energy, 2015, 18: 97.
[195]
Liu F, ChenD A, Wang C, Luo K Y, Gu W Y, Briseno A L, Hsu J W P, Russell T P. ACS Appl. Mater. Interfaces, 2014, 6(22): 19876.
[196]
Lu L Y, Zheng T Y, Wu Q H, Schneider A M, ZhaoD L, Yu L P. Chem. Rev., 2015, 115(23): 12666.
[197]
Aernouts T, Vanlaeke P, Geens W, Poortmans J, Heremans P, Borghs S, Mertens R, Andriessen R, Leenders L. Thin Solid Films, 2004, 451-452: 22.
[198]
Kim J H, Park J H, Lee J H, Kim J S, Sim M, Shim C, Cho K. J. Mater. Chem., 2010, 20(35): 7398.
[199]
Han T H, Lee Y, Choi M R, Woo S H, Bae S H, Hong B H, Ahn J H, Lee T W. Nat. Photonics, 2012, 6(2): 105.
[200]
Admassie S, Zhang F L, Manoj A G, Svensson M, Andersson M R, Inganäs O. Sol. Energy Mater. Sol. Cells, 2006, 90(2): 133.
[201]
Yoon H, Chang M, Jang J. Adv. Funct. Mater., 2007, 17(3): 431.
[202]
Park YD, Lee H S, Choi Y J, KwakD, Cho J H, Lee S, Cho K. Adv. Funct. Mater., 2009, 19(8): 1200.
[203]
Qiu L Z, Lee W H, Wang X H, Kim J S, Lim J A, KwakD, Lee S, Cho K. Adv. Mater., 2009, 21(13): 1349.
[204]
Wang C C, Rivnay J, Himmelberger S, Vakhshouri K, Toney M F, Gomez ED, Salleo A. ACS Appl. Mater. Interfaces, 2013, 5(7): 2342.
[205]
Yang H, Shin T J, Yang L, Cho K, Ryu C Y, Bao Z. Adv. Funct. Mater., 2005, 15(4): 671.
[206]
Lee J Y, Lin C J, Lo C T, Tsai J C, Chen W C. Macromolecules, 2013, 46(8): 3005.
[207]
Lim J A, Kim J H, Qiu L Z, Lee W H, Lee H S, KwakD, Cho K. Adv. Funct. Mater., 2010, 20(19): 3292.
[208]
Liu H Q, Reccius C H, Craighead H G. Appl. Phys. Lett., 2005, 87(25): 253106.
[209]
Zenoozi S, Agbolaghi S, Poormahdi E, Hashemzadeh-Gargari M, Mahmoudi M. Macromol. Res., 2017, 25(8): 826.
[210]
Cho B, Park K S, Baek J, Oh H S, Koo Lee Y E, Sung M M. Nano Lett., 2014, 14(6): 3321.
[211]
Jeon S S, Park J K, Yoon C S, Im S S. Langmuir, 2009, 25(19): 11420.
[212]
Kim D, Han J, Park Y, Jang Y, Cho J, Hwang M, Cho K. Adv. Mater., 2006, 18(6): 719.
[213]
Ma Z Y, Geng Y H, YanD H. Polymer, 2007, 48(1): 31.
[214]
Nuraje N, Su K, Yang N, Matsui H. ACS Nano, 2008, 2 (3):502.
[215]
Schoonveld W A, Vrijmoeth J, Klapwijk T M. Appl. Phys. Lett., 1998, 73(26): 3884.
[216]
Su K, Nuraje N, Zhang L, Chu I W, Peetz R, Matsui H, Yang N L. Adv. Mater., 2007, 19(5): 669.
[217]
Xiao X L, Hu Z J, Wang Z B, He T. J. Phys. Chem. B, 2009, 113 (44):14604.
[218]
Xiao X L, Wang Z B, Hu Z J, He T. J. Phys. Chem. B, 2010, 114 (22): 7452.
[219]
Rahimi K, Botiz I, Stingelin N, Kayunkid N, Sommer M, Koch F P V, Nguyen H, Coulembier O, Dubois P, Brinkmann M, Reiter G. Angew. Chem., 2012, 124(44): 11293.

Funding

National Natural Science Foundation of China(52203030)
China University of Petroleum(Beijing)Research Fund(2462022BJRC008)
PDF(29233 KB)

Accesses

Citation

Detail

Sections
Recommended

/