Application of Electrospinning in the Preparation of High-performance Lithium Ion Battery Anode Materials

Sichang Ma, Dongyang Li, Rui Xu

Prog Chem ›› 2024, Vol. 36 ›› Issue (5) : 757-770.

PDF(85704 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(85704 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (5) : 757-770. DOI: 10.7536/PC230709
Review

Application of Electrospinning in the Preparation of High-performance Lithium Ion Battery Anode Materials

Author information +
History +

Abstract

the rapid advancement of large-scale energy storage devices has spurred the need for research focused on achieving higher energy density in lithium-ion batteries.Within this context,anode materials,which are crucial components of lithium-ion batteries,play a critical role in attaining enhanced energy density.Unfortunately,commercially available graphite anodes suffer from limitations such as low theoretical capacity,poor rate capability,and a low voltage plateau.Consequently,there is an urgent requirement to develop alternative anode materials that can meet these demands.electrospinning has emerged as a popular method for fabricating electrode materials due to its simplicity,cost-effectiveness,and ability to produce flexible nanofibers.This technique offers several advantages,including the ability to tailor nanomaterials with diverse morphologies By adjusting key parameters.Furthermore,electrospinning enables the creation of nanomaterials with large specific surface areas,high mechanical strength,flexibility,and self-supporting properties.Consequently,It has garnered significant interest in the field of anode material preparation for lithium-ion batteries.This paper aims to provide an overview of the research progress in utilizing electrospinning for the preparation of anode materials in lithium-ion batteries.it covers various categories of anode materials,including carbon-based,titanium-based,silicon-based,tin-based,and other metallic compound materials.Additionally,the paper outlines the future directions and potential advancements in the development of electrospun anode materials.by exploring the applications of electrospinning in anode material preparation,this paper contributes to the understanding and advancement of lithium-ion battery technology,offering insights into the potential of electrospinning as a versatile and effective technique for enhancing anode performance。

Contents

1 Introduction

2 Basics of electrospinning technique

2.1 Working principle

2.2 Parameters on fibers fabrication

2.3 Superiority of electrospinning technique for anode materials

3 Representative anode materials for lithium-ion batteries

3.1 Carbon-based anode

3.2 Titanium-based anode

3.3 Silicon-based anode

3.4 Tin-based anode

3.5 Anodes with other compounds

4 Conclusion and outlook

Key words

lithium ion batteries / electrospinning / anode materials / carbon-based / titanium-based / silicon-based / tin-based / metallic compounds

Cite this article

Download Citations
Sichang Ma , Dongyang Li , Rui Xu. Application of Electrospinning in the Preparation of High-performance Lithium Ion Battery Anode Materials[J]. Progress in Chemistry. 2024, 36(5): 757-770 https://doi.org/10.7536/PC230709

References

[1]
Hannan M A, Lipu M S H, Hussain A, Mohamed A. Renew. Sustain. Energy Rev., 2017, 78: 834.
[2]
Zuniga L, Agubra V, Flores D, Campos H, Villareal J, Alcoutlabi M. J. Alloys Compd., 2016, 686: 733.
[3]
Nitta N, Wu F X, Lee J T, Yushin G. Mater. Today, 2015, 18(5): 252.
[4]
Lu J, Chen Z W, Pan F, Cui Y, Amine K. Electrochem. Energy Rev., 2018, 1(1): 35.
[5]
Park C M, Kim J H, Kim H, Sohn H J. Chem. Soc. Rev., 2010, 39(8): 3115.
[6]
Li W H, Zeng L C, Wu Y, Yu Y. Sci. China Mater., 2016, 59(4): 287.
[7]
Matabola K P, Moutloali R M. J. Mater. Sci., 2013, 48(16): 5475.
[8]
Thavasi V, Singh G, Ramakrishna S. Energy Environ. Sci., 2008, 1(2): 205.
[9]
Wang Y, Liu Y K, Liu Y C, Shen Q Y, Chen C C, Qiu F Y, Li P, Jiao L F, Qu X H. J. Energy Chem., 2021, 54: 225.
[10]
Xue J J, Wu T, Dai Y Q, Xia Y N. Chem. Rev., 2019, 119(8): 5298.
[11]
Amiraliyan N, Nouri M, Kish M H. J. Appl. Polym. Sci., 2009, 113(1): 226.
[12]
Haghi A K, Akbari M. Phys. Status Solidi A, 2007, 204(6): 1830.
[13]
Sill T J, von Recum H A. Biomaterials, 2008, 29(13): 1989.
[14]
Megelski S, Stephens J S, Chase D B, Rabolt J F. Macromolecules, 2002, 35(22): 8456.
[15]
Zhang Y S, Zhang X L, Silva S R P, Ding B, Zhang P, Shao G S. Adv. Sci., 2022, 9(4): 2103879.
[16]
Chen L F, Feng Y, Liang H W, Wu Z Y, Yu S H. Adv. Energy Mater., 2017, 7: 1700826.
[17]
Zhang C L, Yu S H. Chem. Soc. Rev., 2014, 43(13): 4423.
[18]
Li Z, Zhang J W, Yu L G, Zhang J W. J. Mater. Sci., 2017, 52(11): 6173.
[19]
Luo W, Shen F, Bommier C, Zhu H L, Ji X L, Hu L B. Acc. Chem. Res., 2016, 49(2): 231.
[20]
Zhang Y, Jiao Y D, Liao M, Wang B J, Peng H S. Carbon, 2017, 124: 79.
[21]
Kim C, Yang K  , Kojima M, Yoshida K, Kim Y  , Kim Y  , Endo M. Adv. Funct. Mater., 2006, 16(18): 2393.
[22]
Zhang B, Yu Y, Xu Z L, Abouali S, Akbari M, He Y B, Kang F Y, Kim J K. Adv. Energy Mater., 2014, 4(7): 1301448.
[23]
Chen T Z, Chi Y B, Liu X Y, Xia X W, Chen Y S, Xu J, Song Y J. Materials, 2022, 15(17): 5955.
[24]
Li D S, Wang D Y, Rui K, Ma Z Y, Xie L, Liu J H, Zhang Y, Chen R F, Yan Y, Lin H J, Xie X J, Zhu J X, Huang W. J. Power Sources, 2018, 384: 27.
[25]
Liu C, Xiao N, Wang Y W, Zhou Y, Wang G, Li H Q, Ji Y Q, Qiu J S. Carbon, 2018, 139: 716.
[26]
Ji L W, Zhang X W. Nanotechnology, 2009, 20(15): 155705.
[27]
Nan D, Wang J G, Huang Z H, Wang L, Shen W C, Kang F Y. Electrochem. Commun., 2013, 34: 52.
[28]
Chen Y M, Li X Y, Zhou X Y, Yao H M, Huang H T, Mai Y W, Zhou L M. Energy Environ. Sci., 2014, 7(8): 2689.
[29]
Chen R Z, Hu Y, Shen Z, Pan P, He X, Wu K S, Zhang X W, Cheng Z L. J. Mater. Chem. A, 2017, 5(25): 12914.
[30]
Nan D, Huang Z H, Lv R T, Yang L, Wang J G, Shen W C, Lin Y X, Yu X L, Ye L, Sun H Y, Kang F Y. J. Mater. Chem. A, 2014, 2(46): 19678.
[31]
Qie L, Chen W M, Wang Z H, Shao Q G, Li X, Yuan L X, Hu X L, Zhang W X, Huang Y H. Adv. Mater., 2012, 24(15): 2047.
[32]
Tong F L, Guo J X, Pan Y L, Liu H B, Lv Y, Wu X Y, Jia D Z, Zhao X J, Hou S C. J. Colloid Interface Sci., 2021, 586: 371.
[33]
Chen Y, Cui X L. Prog. Chem., 2021, 33(8): 1249.
( 陈阳, 崔晓莉. 化学进展, 2021, 33(8): 1249.)
[34]
Ge M Z, Cao C Y, Huang J Y, Li S H, Chen Z, Zhang K Q, Al-Deyab S S, Lai Y K. J. Mater. Chem. A, 2016, 4(18): 6772.
[35]
Zhu Y E, Yang L P, Sheng J, Chen Y N, Gu H C, Wei J P, Zhou Z. Adv. Energy Mater., 2017, 7(22): 1701222.
[36]
Yang Y C, Shi W, Liao S J, Zhang R H, Leng S L. J. Alloys Compd., 2018, 746: 619.
[37]
Qing R, Liu L, Bohling C, Sigmund W. J. Power Sources, 2015, 274: 667.
[38]
Zhang J, Cai Y B, Hou X B, Song X F, Lv P F, Zhou H M, Wei Q F. Beilstein J. Nanotechnol., 2017, 8: 1297.
[39]
Han H, Song T, Bae J Y, Nazar L F, Kim H, Paik U. Energy Environ. Sci., 2011, 4(11): 4532.
[40]
Zhu J D, Chen C, Lu Y, Ge Y Q, Jiang H, Fu K, Zhang X W. Carbon, 2015, 94: 189.
[41]
Hu J M, Wang H R, Qin C X, Li Y, Yang Y G. Mater. Lett., 2020, 279: 128491.
[42]
Su D, Liu L, Liu Z X, Dai J, Wen J X, Yang M, Jamil S, Deng H Q, Cao G Z, Wang X Y. J. Mater. Chem. A, 2020, 8(39): 20666.
[43]
Zhang Y, Dong H, Zhang H, Liu Y J, Ji M D, Xu Y L, Wang Q Q, Luo L. Electrochim. Acta, 2016, 201: 179.
[44]
Zhang Q Y, Zhang C L, Li B, Jiang D D, Kang S F, Li X, Wang Y G. Electrochim. Acta, 2013, 107: 139.
[45]
Liu H P, Wen G W, Bi S F, Gao P. Electrochim. Acta, 2015, 171: 114.
[46]
Huang J J, Jiang Z Y. Electrochim. Acta, 2008, 53(26): 7756.
[47]
Ren Y R, Lu P, Huang X B, Zhou S B, Chen Y D, Liu B P, Chu F Q, Ding J N. Solid State Ion., 2015, 274: 83.
[48]
Tian Q H, Chen P, Zhang Z X, Yang L. Mater. Chem. Phys., 2017, 201: 362.
[49]
Bian M, Yang Y, Tian L. J. Phys. Chem. Solids, 2018, 113: 11.
[50]
Park H, Song T, Han H, Paik U. J. Power Sources, 2013, 244: 726.
[51]
Huang Z, Luo P F. Solid State Ion., 2017, 311: 52.
[52]
Sun L, Liu Y X, Shao R, Wu J, Jiang R Y, Jin Z. Energy Storage Mater., 2022, 46: 482.
[53]
An W L, Gao B, Mei S X, Xiang B, Fu J J, Wang L, Zhang Q B, Chu P K, Huo K F. Nat. Commun., 2019, 10: 1447.
[54]
Luo F, Liu B N, Zheng J Y, Chu G, Zhong K F, Li H, Huang X J, Chen L Q. J. Electrochem. Soc., 2015, 162(14): A2509.
[55]
Chen B J, Zu L H, Liu Y, Meng R J, Feng Y T, Peng C X, Zhu F, Hao T Z, Ru J J, Wang Y G, Yang J H. Angew. Chem. Int. Ed., 2020, 59(8): 3137.
[56]
Shao F, Li H, Yao L, Xu S W, Li G, Li B, Zou C, Yang Z, Su Y J, Hu N T, Zhang Y F. ACS Appl. Mater. Interfaces, 2021, 13(23): 27270.
[57]
Wang H W, Fu J Z, Wang C, Wang J Y, Yang A K, Li C C, Sun Q F, Cui Y, Li H Q. Energy Environ. Sci., 2020, 13(3): 848.
[58]
Hu G F, Zhang X H, Liu X Y, Yu J Y, Ding B. Adv. Fiber Mater., 2020, 2(2): 46.
[59]
Wang M S, Song W L, Wang J, Fan L Z. Carbon, 2015, 82: 337.
[60]
Park S W, Shim H W, Kim J C, Kim D W. J. Alloys Compd., 2017, 728: 490.
[61]
Liu N T, Liu J, Jia D Z, Huang Y D, Luo J, Mamat X, Yu Y, Dong Y M, Hu G Z. Energy Storage Mater., 2019, 18: 165.
[62]
Zeng Y F, Huang Y D, Liu N T, Wang X C, Zhang Y, Guo Y, Wu H H, Chen H X, Tang X C, Zhang Q B. J. Energy Chem., 2021, 54: 727.
[63]
Liu Q R, Gao Y, He P G, Yan C, Gao Y, Gao J Z, Lu H B, Yang Z B. Mater. Lett., 2018, 231: 205.
[64]
Du X P, Huang Y, Feng Z H, Han X P, Wang J M, Sun X. Appl. Surf. Sci., 2023, 610: 155491.
[65]
Huang C, Kim A, Chung D J, Park E, Young N P, Jurkschat K, Kim H, Grant P S. ACS Appl. Mater. Interfaces, 2018, 10(18): 15624.
[66]
Sivonxay E, Aykol M, Persson K A. Electrochim. Acta, 2020, 331: 135344.
[67]
Jung J W, Lee C L, Yu S, Kim I D. J. Mater. Chem. A, 2016, 4(3): 703.
[68]
Belgibayeva A, Taniguchi I. Electrochim. Acta, 2019, 328: 135101.
[69]
Han F, Li D, Li W C, Lei C, Sun Q, Lu A H. Adv. Funct. Mater., 2013, 23(13): 1692.
[70]
Thirugnanam L, Ganguly D, Sundara R. Mater. Lett., 2021, 298: 130029.
[71]
Ying H J, Han W Q. Adv. Sci., 2017, 4(11): 1700298.
[72]
Wu C H, Zhu G J, Wang Q, Wu M H, Zhang H J. Energy Storage Mater., 2021, 43: 430.
[73]
Zhu G J, Luo W, Wang L J, Jiang W, Yang J P. J. Mater. Chem. A, 2019, 7(43): 24715.
[74]
Chen K S, Xu R, Luu N S, Secor E B, Hamamoto K, Li Q Q, Kim S, Sangwan V K, Balla I, Guiney L M, Seo J W T, Yu X K, Liu W W, Wu J S, Wolverton C, Dravid V P, Barnett S A, Lu J, Amine K, Hersam M C. Nano Lett., 2017, 17(4): 2539.
[75]
Yu Y, Gu L, Zhu C B, van Aken P A, Maier J. J. Am. Chem. Soc., 2009, 131(44): 15984.
[76]
Ge G, Lu Y, Qu X Y, Zhao W, Ren Y F, Wang W J, Wang Q, Huang W, Dong X C. ACS Nano, 2020, 14(1): 218.
[77]
Zhu S Q, Huang A M, Wang Q, Xu Y. Nanotechnology, 2021, 32(16): 165401.
[78]
Lu L G, Zhang B, Song J J, Gao H W, Wu Z D, Shen H L, Li Y, Lei W, Hao Q L. Nanotechnology, 2022, 33(11): 115403.
[79]
Chen J S, Lou X W. Small, 2013, 9, 11: 1877.
[80]
Cao D X, Wang H K, Li B B, Li C, Xie S M, Rogach A L, Niu C M. Electrochim. Acta, 2016, 216: 79.
[81]
Zhou D, Song W L, Li X G, Fan L Z. ACS Appl. Mater. Interfaces, 2016, 8(21): 13410.
[82]
Hu R Z, Zhang H P, Lu Z C, Liu J, Zeng M Q, Yang L C, Yuan B, Zhu M. Nano Energy, 2018, 45: 255.
[83]
Liang J J, Yuan C C, Li H H, Fan K, Wei Z X, Sun H Q, Ma J M. Nano Micro Lett., 2018, 10(2): 21.
[84]
Yang F H, Gao H, Hao J N, Zhang S L, Li P, Liu Y Q, Chen J, Guo Z P. Adv. Funct. Mater., 2019, 29(16): 1808291.
[85]
Gao S W, Wang N, Li S, Li D M, Cui Z M, Yue G C, Liu J C, Zhao X X, Jiang L, Zhao Y. Angew. Chem. Int. Ed., 2020, 59(6): 2465.
[86]
Zan F, Jabeen N, Xiong W, Hussain A, Wang Y D, Xia H. Nanotechnology, 2020, 31(18): 185402.
[87]
Zhou H Y, Jin M J, Zhou B J, Zhao J G, Han W H. Nanotechnology, 2021, 32(9): 095704.
[88]
Xiong X H, Yang C H, Wang G H, Lin Y W, Ou X, Wang J H, Zhao B T, Liu M L, Lin Z, Huang K. Energy Environ. Sci., 2017, 10(8): 1757.
[89]
Wang W, Li P H, Zheng H, Liu Q, Lv F, Wu J D, Wang H, Guo S J. Small, 2017, 13(46): 1702228.
[90]
Xia J, Yuan Y T, Yan H X, Liu J F, Zhang Y, Liu L, Zhang S, Li W J, Yang X K, Shu H B, Wang X Y, Cao G Z. J. Power Sources, 2020, 449: 227559.
[91]
Xia G L, Gao Q L, Sun D L, Yu X B. Small, 2017, 13(44): 1701561.
[92]
Fang S, Bresser D, Passerini S. Adv. Energy Mater., 2020, 10(1): 1902485.
[93]
Zhong G K, Qu K, Ren C L, Su Y, Fu B, Zi M F, Dai L, Xiao Q, Xu J, Zhong X L, An F, Ye M, Ke S M, Xie S H, Wang J B, Gao P, Li J Y. Nano Energy, 2020, 74: 104876.
[94]
Zheng M B, Tang H, Li L L, Hu Q, Zhang L, Xue H G, Pang H. Adv. Sci., 2018, 5(3): 1700592.
[95]
Wu H, Hou C Y, Shen G Z, Liu T, Shao Y L, Xiao R, Wang H Z. Nano Res., 2018, 11(11): 5866.
[96]
Sarang K T, Zhao X F, Holta D, Radovic M, Green M J, Oh E S, Lutkenhaus J L. Nanoscale, 2020, 12(40): 20699.
[97]
Guo Y, Zhang D Y, Yang Y, Wang Y B, Bai Z X, Chu P K, Luo Y S. Nanoscale, 2021, 13(8): 4624.
[98]
Wang J Y, Cui Y, Wang D. Adv. Mater., 2018, 31(28): 1801993.
[99]
Yang R, Wang L L, Mi Y M, Liu Y, Wu J B, Zhao X. Energy Storage Science and Technology, 2021, 10(04): 1253.
( 杨瑞, 汪丽莉, 宓一鸣, 刘烨, 吴建宝, 赵新. 储能科学与技术, 2021, 10(04): 1253. )
[100]
Chaudhari S, Srinivasan M. J. Mater. Chem., 2012, 22(43): 23049.
[101]
Oh J H, Su Jo M, Jeong S M, Cho C, Kang Y C, Cho J S. J. Ind. Eng. Chem., 2019, 77: 76.
[102]
Lee J S, Saroha R, Oh J H, Cho C, Jin B, Kang D W, Cho J S. J. Ind. Eng. Chem., 2022, 114: 276.
[103]
Luo F, Ma D T, Li Y L, Mi H W, Zhang P X, Luo S. Electrochim. Acta, 2019, 299: 173.
[104]
Ni X P, Cui Z, Luo H X, Chen H F, Liu C L, Wu Q L, Ju A Q. Chem. Eng. J., 2021, 404: 126249.

Funding

National Natural Science Foundation of China(52102204)
PDF(85704 KB)

Accesses

Citation

Detail

Sections
Recommended

/