Synthesis of Multi-Cyclic Hydrocarbon High-Density Aviation Fuels from Biomass

Chongya Kong, Fangfang Tan, Yizhuo Wang, Hong Wang, Zhanchao Li

Prog Chem ›› 2024, Vol. 36 ›› Issue (3) : 448-462.

PDF(1181 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1181 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (3) : 448-462. DOI: 10.7536/PC230713
Review

Synthesis of Multi-Cyclic Hydrocarbon High-Density Aviation Fuels from Biomass

Author information +
History +

Abstract

High-density aviation fuels are a type of hydrocarbon which are synthesized to improve the flight performance of aerospace vehicles. They have the advantages of high density, high volumetric net heat of combustion value, and can effectively improve the flight performance of vehicles such as range, speed, load, etc. With the decrease of global fossil resources and the continuous deterioration of the ecological environment, the synthesis of high-density aviation fuels from biomass has become a research hotspot. In this review, the research progress in synthesis of multi-cyclic hydrocarbon high-density aviation fuels from platform molecules and derivatives in recent years is discussed. The common C-C bond coupling methods for constructing the multi-cyclic structure are introduced, including aldol condensation reaction, alkylation reaction, aldol-hydrodeoxygenation-alkylation reaction, Diels-Alder reaction, photoinduced 2+2 cycloaddition, rearrangement reaction. The new progress in synthesis of petroleum based high-density aviation fuels or multi-cyclic hydrocarbon mixed fuels from platform molecules is listed. The properties of a large number of multi-cyclic hydrocarbon high-density aviation fuels are summarized, and the influence of molecular structure and composition on fuel properties are discussed. Introduction of the appropriate substituent groups and synthesis of multi-component fuels are the main methods to improve the comprehensive properties of fuels. Synthesis of petroleum-based high-density fuels using platform molecules is another strategy to improve the properties of fuels. Finally, the development trend of synthesis of multi-cyclic hydrocarbon high-density aviation fuels using platform molecules from biomass is prospected.

Contents

1 Introduction

2 Aldol condensation reaction

3 Alkylation and Aldol-Hydrodeoxygenation-Alkylation reaction

4 Diels-Alder reaction

5 Photoinduced 2+2 cycloaddition reaction

6 Rearrangement reaction

7 Summary of fuel properties

8 Conclusion and outlook

Key words

high-density aviation fuel / multi-cyclic structure / platform molecules / C-C bond coupling / property

Cite this article

Download Citations
Chongya Kong , Fangfang Tan , Yizhuo Wang , et al . Synthesis of Multi-Cyclic Hydrocarbon High-Density Aviation Fuels from Biomass[J]. Progress in Chemistry. 2024, 36(3): 448-462 https://doi.org/10.7536/PC230713

References

[1]
Zou J J, Zhang X W, Wang L, Mi Z T. Chinese Journal of Energetic Materials, 2007, 15(4): 411.
(邹吉军, 张香文, 王笠, 米镇涛. 含能材料, 2007, 15(4): 411.)
[2]
Zou J J, Guo C, Zhang X W, Wang L, Mi Z T. Journal of Propulsion Technology, 2014, 35(10): 1419.
(邹吉军, 郭成, 张香文, 王笠, 米镇涛. 推进技术, 2014, 35(10): 1419.)
[3]
Zhang X W, Pan L, Wang L, Zou J J. Chem. Eng. Sci., 2018, 180: 95.
[4]
Chung H S, Chen C S H, Kremer R A, Boulton J R, Burdette G W. Energy Fuels, 1999, 13(3): 641.
[5]
Pan L, Deng Q, E X T F, Nie G K, Zhang X W, Zou J J. Progress in Chemistry, 2015, 27(11): 1531.
(潘伦, 邓强, 鄂秀天凤, 聂根阔, 张香文, 邹吉军. 化学进展, 2015, 27(11): 1531.)
[6]
Xie J W, Zhang X W, Xie J J, Nie G K, Pan L, Zou J J. Progress in Chemistry, 2018, 30(9): 1424.
(谢嘉维, 张香文, 谢君健, 聂根阔, 潘伦, 邹吉军. 化学进展, 2018, 30(9): 1424.)
[7]
Huertas D, Florscher M, Dragojlovic V. Green Chem., 2009, 11(1): 91.
[8]
Nguyen M, Nguyen L, Jeon E, Kim J, Cheong M, Kim H, Lee J. J. Catal., 2008, 258(1): 5.
[9]
Wang Z, Wei H, He F, Wei H Y. Missiles and Space Vehicles, 2011, 3: 41.
(王贞, 卫豪, 贺芳, 卫宏远. 导弹与航天运载技术, 2011, 3: 41.)
[10]
Isikgor F H, Becer C R. Polym. Chem., 2015, 6(25): 4497.
[11]
McKendry P. Bioresour. Technol., 2002, 83(1): 37.
[12]
Corma A, Iborra S, Velty A. Chem. Rev., 2007, 107(6): 2411.
[13]
Stöcker M. Angew. Chem. Int. Ed., 2008, 47(48): 9200.
[14]
Li C Z, Zhao X C, Wang A Q, Huber G W, Zhang T. Chem. Rev., 2015, 115(21): 11559.
[15]
Li H, Riisager A, Saravanamurugan S, Pandey A, Sangwan R S, Yang S, Luque R. ACS Catal., 2018, 8(1): 148.
[16]
Wang X Y, Jia T H, Pan L, Liu Q, Fang Y M, Zou J J, Zhang X W. Trans. Tianjin Univ., 2021, 27(2): 87.
[17]
Wang Y Z, Li Z C, Li Q, Wang H. ACS Omega, 2022, 7(23): 19158.
[18]
Li Z C, Wang Y Z, Li Q, Xu L Q, Wang H. Green Energy Environ., 2023, 8(1): 331.
[19]
Li Z C, Wang Y Z, Wang H. Energy Technol., 2019, 7(7): 1900418.
[20]
Muldoon J A, Harvey B G. ChemSusChem, 2020, 13(22): 5777.
[21]
Li Z C, Li Q, Wang Y Z, Zhang J, Wang H. Energy Fuels, 2021, 35(8): 6691.
[22]
Zhao C, Camaioni D M, Lercher J A. J. Catal., 2012, 288: 92.
[23]
Yang J F, Li N, Li G Y, Wang W T, Wang A Q, Wang X D, Cong Y, Zhang T. Chem. Commun., 2014, 50(20): 2572.
[24]
Sheng X R, Li G Y, Wang W T, Cong Y, Wang X D, Huber G W, Li N, Wang A Q, Zhang T. AlChE. J., 2016, 62(8): 2754.
[25]
Wang W, Li N, Li G Y, Li S S, Wang W T, Wang A Q, Cong Y, Wang X D, Zhang T. ACS Sustainable Chem. Eng., 2017, 5(2): 1812.
[26]
Liu Y N, Nie G K, Yu S T, Pan L, Wang L, Zhang X W, Shi C X, Zou J J. Chem. Eng. Sci., 2021, 238: 116592.
[27]
Wang W, An L, Qian C, Li Y Q, Li M P, Shao X Z, Ji X H, Li Z Z. Molecules, 2023, 28(13): 5029.
[28]
Zhang X H, Song M J, Liu J G, Zhang Q, Chen L G, Ma L L. J. Energy Chem., 2023, 79: 22.
[29]
Liu Y T, Li G Y, Hu Y C, Wang A Q, Lu F, Zou J J, Cong Y, Li N, Zhang T. Joule, 2019, 3(4): 1028.
[30]
Sato T, Rode C V, Sato O, Shirai M. Appl. Catal. B Environ., 2004, 49(3): 181.
[31]
Wang W, Liu Y T, Li N, Li G Y, Wang W T, Wang A Q, Wang X D, Zhang T. Sci. Rep., 2017, 7: 6111.
[32]
Harvey B G, Wright M E, Quintana R L. Energy Fuels, 2010, 24(1): 267.
[33]
Zhu B Q, Yuan B, Yu F L, Xie C X. Journal of Qingdao University of Science and Technology Natural Science Edition, 2022, 43(5): 14.
(朱本强, 袁冰, 于凤丽, 解从霞. 青岛科技大学学报(自然科学版), 2022, 43(5): 14.)
[34]
Li Z, Pan L, Nie G K, Xie J J, Xie J W, Zhang X W, Wang L, Zou J J. Chem. Eng. Sci., 2018, 191: 343.
[35]
Nie G K, Wang H Y, Li Q, Pan L, Liu Y N, Song Z Q, Zhang X W, Zou J J, Yu S T. Appl. Catal. B Environ., 2021, 292: 120181.
[36]
Nie G K, Dai Y Y, Liu Y N, Xie J J, Gong S, Afzal N, Zhang X W, Pan L, Zou J J. Chem. Eng. Sci., 2019, 207: 441.
[37]
Yang S C, Shi C X, Shen Z S, Pan L, Huang Z F, Zhang X W, Zou J J. J. Energy Chem., 2023, 77: 452.
[38]
Nie G K, Zhang X W, Pan L, Han P J, Xie J J, Li Z, Xie J W, Zou J J. Chem. Eng. Sci., 2017, 173: 91.
[39]
Xu J L, Li N, Li G Y, Han F G, Wang A Q, Cong Y, Wang X D, Zhang T. Green Chem., 2018, 20(16): 3753.
[40]
Timothy A A, Han F G, Li G Y, Xu J L, Wang A Q, Cong Y, Li N. Sustain. Energy Fuels, 2020, 4(11): 5560.
[41]
Zhang X J, Han F A, Lin S Z, Chen F, Sun M J, Liu J J, Li G Y, Tang H, Wang A Q, Cong Y, Li N. ACS Sustainable Chem. Eng., 2019, 7(14): 12023.
[42]
Han F G, Xu J Y, Li G Y, Xu J L, Wang A Q, Cong Y, Zhang T, Li N. Sustain. Energy Fuels, 2021, 5(2): 556.
[43]
Gao H F, Han F G, Li G Y, Wang A Q, Cong Y, Li Z Z, Wang W, Li N. Sustain. Energy Fuels, 2022, 6(6): 1616.
[44]
Pan L, Xie J J, Nie G K, Li Z, Zhang X W, Zou J J. AlChE. J., 2020, 66(1): e16789.
[45]
Xie J J, Zhang X W, Liu Y K, Li Z, E X T F, Xie J W, Zhang Y C, Pan L, Zou J J. Catal. Today, 2019, 319: 139.
[46]
Meylemans H A, Quintana R L, Goldsmith B R, Harvey B G. ChemSusChem, 2011, 4(4): 465.
[47]
Li G Y, Hou B L, Wang A Q, Xin X L, Cong Y, Wang X D, Li N, Zhang T. Angew. Chem. Int. Ed., 2019, 58(35): 12154.
[48]
Nie G K, Shi C X, Dai Y Y, Liu Y N, Liu Y K, Ma C, Liu Q, Pan L, Zhang X W, Zou J J. Green Chem., 2020, 22(22): 7765.
[49]
Woodroffe J D, Harvey B G. ChemSusChem, 2021, 14(1): 339.
[50]
Liu Y T, Wang R, Qi H F, Liu X Y, Li G Y, Wang A Q, Wang X D, Cong Y, Zhang T, Li N. Nat. Commun., 2021, 12: 46.
[51]
Wang R, Liu Y T, Li G Y, Wang A Q, Wang X D, Cong Y, Zhang T, Li N. ACS Catal., 2021, 11(8): 4810.
[52]
Yu Z J, Zou Z F, Wang R, Li G Y, Wang A Q, Cong Y, Zhang T, Li N. Angew. Chem. Int. Ed., 2023, 62(13): e202300008.
[53]
Liu C W, Hu Y C, Li G Y, Wang A Q, Cong Y, Wang X D, Zhang T, Li N. Sustain. Energy Fuels, 2022, 6(3): 834.
[54]
Luo X L, Lu R, Si X Q, Jiang H F, Shi Q, Ma H X, Zhang C, Xu J, Lu F. J. Energy Chem., 2022, 69: 231.
[55]
McCoy D E, Feo T, Harvey T A, Prum R O. Nat. Commun., 2018, 9: 1.
[56]
Luo N C, Montini T, Zhang J, Fornasiero P, Fonda E, Hou T T, Nie W, Lu J M, Liu J X, Heggen M, Lin L, Ma C T, Wang M, Fan F T, Jin S Y, Wang F. Nat. Energy, 2019, 4(7): 575.
[57]
Xie J J, Zhang X W, Shi C X, Pan L, Hou F, Nie G K, Xie J W, Liu Q, Zou J J. Sustain. Energy Fuels, 2020, 4(2): 911.
[58]
Xie J J, Pan L, Nie G K, Xie J W, Liu Y K, Ma C, Zhang X W, Zou J J. Green Chem., 2019, 21(21): 5886.
[59]
Xie J J, Zhang X W, Pan L, Nie G K, E X T F, Liu Q, Wang P, Li Y F, Zou J J. Chem. Commun., 2017, 53(74): 10303.
[60]
Tang H, Chen F, Li G Y, Yang X F, Hu Y C, Wang A Q, Cong Y, Wang X D, Zhang T, Li N. J. Energy Chem., 2019, 29: 23.
[61]
Nie G K, Zhang X W, Pan L, Wang M, Zou J J. Chem. Eng. Sci., 2018, 180: 64.
[62]
Dai Y Y, Nie G K, Gong S, Wang L, Pan L, Fang Y M, Zhang X W, Zou J J. Fuel, 2020, 275: 117962.
[63]
Deng Q, Nie G K, Pan L, Zou J J, Zhang X W, Wang L. Green Chem., 2015, 17(8): 4473.
PDF(1181 KB)

Accesses

Citation

Detail

Sections
Recommended

/