Catalytic Conversion of Hydroxyl Compounds : Conversion of Phenols and Alcohols to Ethers and Esters

Xiaoyu Wang, Ruiyi Wang, Xiangpeng Kong, Yulan Niu, Zhanfeng Zheng

Prog Chem ›› 2024, Vol. 36 ›› Issue (3) : 335-356.

PDF(2617 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(2617 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (3) : 335-356. DOI: 10.7536/PC230714
Review

Catalytic Conversion of Hydroxyl Compounds : Conversion of Phenols and Alcohols to Ethers and Esters

Author information +
History +

Abstract

With the background of rapid economic development, the green synthesis of high-value-added chemicals has attracted great interest. Ethers and Esters, the products of hydroxyl compound conversion, are important green chemical products. However, the harsh reaction conditions limit their application. Herein, we review the developments in the catalysis of phenols alkylation to ethers and alcohols oxidative esterification to esters. The modification strategy and catalytic mechanism of the catalytic systems are summarized. The heterogeneous catalytic system and its mechanisms have been mainly discussed. It is found that the acid-base synergistic catalysis and the synergistic effect between metal and support are favorable for the green synthesis of ethers and esters under mild reaction condition. Besides, the application of photocatalysis in oxidative esterification of alcohols is highlighted because the photocatalytic reaction is considered a promising green synthesis method. Finally, the research on the catalytic conversion of hydroxyl compounds are summarized and prospected, and we believe that the synthesis and modification of new catalysts and the exploration of catalytic mechanisms is still a promising research field.

Contents

1 Introduction

2 Activation of phenols hydroxyl group:alkylation of phenols

2.1 Homogeneous catalyst

2.2 Heterogeneous catalyst

2.3 Alkylating agent

2.4 Catalytic mechanism of phenols alkylation

3 Activation of alcohols hydroxyl group:oxidative esterification of alcohols

3.1 Homogeneous catalyst

3.2 Heterogeneous catalyst and catalytic mechanism

4 Photocatalytic oxidative esterification of alcohols

5 Conclusions and outlook

Key words

hydroxyl compounds / catalytic conversion / heterogeneous catalysis / phenols alkylation / alcohols oxidative esterification / photocatalysis

Cite this article

Download Citations
Xiaoyu Wang , Ruiyi Wang , Xiangpeng Kong , et al . Catalytic Conversion of Hydroxyl Compounds : Conversion of Phenols and Alcohols to Ethers and Esters[J]. Progress in Chemistry. 2024, 36(3): 335-356 https://doi.org/10.7536/PC230714

References

[1]
Winkler L D E, Mortimer R H. US 2448942, 1948-09-07.
[2]
Hamilton S B. US 3479410, 1969-11-18.
[3]
Hamilton S B. US 3446856, 1969-05-27.
[4]
Fuhrmann E, Talbiersky J. Org. Process Res. Dev., 2005, 9(2): 206.
[5]
Fiege H, Voges H W, Hamamoto T. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH: 2012.
[6]
Bryner F, US 2726270: 1955-12-06.
[7]
Ouk S, Thiébaud S, Borredon E, Le Gars P. Appl. Catal. A Gen., 2003, 241(1-2): 227.
[8]
Barcelo G, Grenouillat D, Senet J P, Sennyey G. Tetrahedron, 1990, 46(6): 1839.
[9]
Choi W C, Kim J S, Lee T H, Woo S I. Catal. Today, 2000, 63(2-4): 229.
[10]
Santacesaria E, Grasso D, Gelosa D, Carrá S. Appl. Catal., 1990, 64: 83.
[11]
Li J, Liu J, Applied Chemical Industry, 2004, 33 (4): 11.
[12]
Chary K V R, Ramesh K, Vidyasagar G, Venkat Rao V. J. Mol. Catal. A Chem., 2003, 198(1-2): 195.
[13]
Wang Y L, Song Y Y, Huo W T, Jia M J, Jing X Y, Yang P P, Yang Z, Liu G, Zhang W X. Chem. Eng. J., 2012, 181-182: 630.
[14]
Wu G D, Wang X L, Chen B, Li J P, Zhao N, Wei W, Sun Y H. Appl. Catal. A Gen., 2007, 329: 106.
[15]
Jyothi T M, Raja T, Talawar M B, Rao B S. Appl. Catal. A Gen., 2001, 211(1): 41.
[16]
Subramanian T, Dhakshinamoorthy A, Pitchumani K. Tetrahedron Lett., 2013, 54(52): 7167.
[17]
Talawar M B, Jyothi T M, Raja T, Rao B S, Sawant P D. Green Chem., 2000, 2(6): 266.
[18]
Duan Z Y, Gu Y L, Zhang J, Zhu L Y, Deng Y Q. J. Mol. Catal. A Chem., 2006, 250(1-2): 163.
[19]
Lee S C, Lee S W, Kim K S, Lee T J, Kim D H, Kim J C. Catal. Today, 1998, 44(1-4): 253.
[20]
Zhao X, Shen J, Li H, Liu D, Zhou P. Chemical Engineering of Oil or Gas, 2008, 37 (1): 12.
[21]
Lewis H F, Shaffer S, Trieschmann W, Cogan H. Ind. Eng. Chem., 1930, 22(1): 34.
[22]
Oae S, Kiritani R. Bull. Chem. Soc. Jpn., 1966, 39(3): 611.
[23]
Tundo P, Selva M. Acc. Chem. Res., 2002, 35(9): 706.
[24]
Xue B, Jia K, Xu J, Liu N, Liu P, Xu C F, Li Y X. React. Kinet. Mech. Catal., 2012, 107(2): 435.
[25]
Khusnutdinov R I, Shchadneva N A, Mayakova Y Y. Russ. J. Org. Chem., 2014, 50(6): 790.
[26]
Gjyli S, Korpa A, Tabanelli T, Trettin R, Cavani F, Belviso C. Microporous Mesoporous Mater., 2019, 284: 434.
[27]
Acevedo M D, Bedogni G A, Okulik N B, Padró C L. Catal. Lett., 2014, 144(11): 1946.
[28]
Sarala Devi G, Giridhar D, Reddy B M. J. Mol. Catal. A Chem., 2002, 181(1-2): 173.
[29]
Bhattacharyya K G, Talukdar A K, Das P, Sivasanker S. J. Mol. Catal. A Chem., 2003, 197(1-2): 255.
[30]
Bautista F M, Campelo J M, Garcia A, Luna D, Marinas J M, Romero A A, Urbano M R. React. Kinet. Catal. Lett., 1997, 62(1): 47.
[31]
Bautista F M, Campelo J M, Garcia A, Luna D, Marinas J M, Romero A, Navio J A, Macias M. Appl. Catal. A Gen., 1993, 99(2): 161.
[32]
Wang X Y, Wang R Y, Zheng Z F. J. Photochem. Photobiol. A Chem., 2020, 400: 112695.
[33]
Velu S, Swamy C S. Appl. Catal. A Gen., 1997, 162(1-2): 81.
[34]
Bolognini M, Cavani F, Scagliarini D, Flego C, Perego C, Saba M. Catal. Today, 2002, 75(1-4): 103.
[35]
Liu C, Wang J, Meng L K, Deng Y, Li Y, Lei A W. Angew. Chem. Int. Ed., 2011, 50(22): 5144.
[36]
Bai X F, Ye F, Zheng L S, Lai G Q, Xia C G, Xu L W. Chem. Commun., 2012, 48(68): 8592.
[37]
Gowrisankar S, Neumann H, Beller M. Angew. Chem. Int. Ed., 2011, 50(22): 5139.
[38]
Wang L Y, Li J, Dai W, Lv Y, Zhang Y, Gao S. Green Chem., 2014, 16(4): 2164.
[39]
Zhang D, Pan C D. Catal. Commun., 2012, 20: 41.
[40]
Owston N A, Parker A J, Williams J M J. Chemical Communications, 2008, (5): 624.
[41]
Zhang J, Leitus G, Ben-David Y, Milstein D. J. Am. Chem. Soc., 2005, 127(31): 10840.
[42]
Nobuta T, Fujiya A, Hirashima S I, Tada N, Miura T, Itoh A. Tetrahedron Lett., 2012, 53(39): 5306.
[43]
Wu X F. Chem., 2012, 18(29): 8912.
[44]
Wan X Y, Deng W P, Zhang Q H, Wang Y. Catal. Today, 2014, 233: 147.
[45]
Ahmed M S, Mannel D S, Root T W, Stahl S S. Org. Process Res. Dev., 2017, 21(9): 1388.
[46]
Del Pozo C, Iglesias M, Sánchez F. Organometallics, 2011, 30(8): 2180.
[47]
Jagadeesh R V, Junge H, Pohl M M, Radnik J, Brückner A, Beller M. J. Am. Chem. Soc., 2013, 135(29): 10776.
[48]
Panwar V, Ray S S, Jain S L. Mol. Catal., 2017, 427: 31.
[49]
Zhong W, Liu H L, Bai C H, Liao S J, Li Y W. ACS Catal., 2015, 5(3): 1850.
[50]
Evans E J Jr, Li H, Han S, Henkelman G, Mullins C B. ACS Catal., 2019, 9(5): 4516.
[51]
Brett G L, Miedziak P J, Dimitratos N, Lopez-Sanchez J A, Dummer N F, Tiruvalam R, Kiely C J, Knight D W, Taylor S H, Morgan D J, Carley A F, Hutchings G J. Catal. Sci. Technol., 2012, 2(1): 97.
[52]
Hu Y K, Xia J W, Li J, Li H J, Li Y X, Li S Z, Duanmu C S, Li B D, Wang X. J. Mater. Sci., 2021, 56(12): 7308.
[53]
Mannel D S, King J, Preger Y, Ahmed M S, Root T W, Stahl S S. ACS Catal., 2018, 8(2): 1038.
[54]
Costa V V, Estrada M, Demidova Y, Prosvirin I, Kriventsov V, Cotta R F, Fuentes S, Simakov A, Gusevskaya E V. J. Catal., 2012, 292: 148.
[55]
Moromi S K, Hakim Siddiki S M A, Ali M A, Kon K, Shimizu K I. Catal. Sci. Technol., 2014, 4(10): 3631.
[56]
Verma S, Verma D, Sinha A K, Jain S L. Appl. Catal. A Gen., 2015, 489: 17.
[57]
Smolentseva E, Costa V V, Cotta R F, Simakova O, Beloshapkin S, Gusevskaya E V, Simakov A. ChemCatChem, 2015, 7(6): 1011.
[58]
Zhou Y X, Chen Y Z, Cao L N, Lu J L, Jiang H L. Chem. Commun., 2015, 51(39): 8292.
[59]
Parreira L A, Bogdanchikova N, Pestryakov A, Zepeda T A, Tuzovskaya I, Farías M H, Gusevskaya E V. Appl. Catal. A Gen., 2011, 397(1-2): 145.
[60]
Cui W J, Jia M L, Ao W L, Zhaorigetu B. React. Kinet. Mech. Catal., 2013, 110(2): 437.
[61]
Kang X C, Zhang J L, Shang W T, Wu T B, Zhang P, Han B X, Wu Z H, Mo G, Xing X Q. J. Am. Chem. Soc., 2014, 136(10): 3768.
[62]
Wei H L, Li J Y, Yu J, Zheng J W, Su H Q, Wang X J. Inorg. Chim. Acta, 2015, 427: 33.
[63]
Taketoshi A, Gangarajula Y, Sodenaga R, Nakayama A, Okumura M, Sakaguchi N, Murayama T, Shimada T, Takagi S, Haruta M, Qiao B T, Wang J H, Ishida T. ACS Appl. Mater. Interfaces, 2023, 15(28): 34290.
[64]
Xiao Q, Liu Z, Bo A, Zavahir S, Sarina S, Bottle S, Riches J D, Zhu H Y. J. Am. Chem. Soc., 2015, 137(5): 1956.
[65]
Han P F, Jin P, Li X, Xu Y, Li K, Wang S Y, Nie Z. Appl. Catal. B Environ., 2021, 298: 120598.
[66]
Fan C Y, Wang R Y, Kong P, Wang X Y, Wang J, Zhang X C, Zheng Z F. Catal. Commun., 2020, 140: 106002.
[67]
Wang X Y, Wang R Y, Wang J, Fan C Y, Zheng Z F. Phys. Chem. Chem. Phys., 2020, 22(3): 1655.

Funding

Fundamental Research Program of Shanxi Province(20210302124472)
National Natural Science Foundation of China(22072176)
Shanxi Science and Technology Department(20210302123012)
Shanxi Science and Technology Department(201801D221093)
Shanxi Science and Technology Department(202203021211003)
PDF(2617 KB)

Accesses

Citation

Detail

Sections
Recommended

/