Photocatalytic Production of Hydrogen Peroxide from Covalent Organic Framework Materials

Anqi Chen, Zhiwei Jiang, Juntao Tang, Guipeng Yu

Prog Chem ›› 2024, Vol. 36 ›› Issue (3) : 357-366.

PDF(5797 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5797 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (3) : 357-366. DOI: 10.7536/PC230724
Review

Photocatalytic Production of Hydrogen Peroxide from Covalent Organic Framework Materials

Author information +
History +

Abstract

Hydrogen peroxide (H2O2) is an important green oxidizing agent, but the main anthraquinone process for production thereof suffers high energy consumption and large safety risks. Artificial photosynthesis H2O2 from water and oxygen features safe, environmentally friendly and energy-saving characteristics and has gradually become a research focus. Covalent organic frameworks (COFs) have been widely used in the photocatalytic production of H2O2 for their high specific surface area, good photocatalytic performance and structural tunability. This review summarizes the recent research progress in the field of COFs photocatalytic production of H2O2, discussing the reaction mechanisms for the production of H2O2 through oxygen reduction, water oxidation, and dual-channel processes. It introduces methods to improve the photocatalytic production of H2O2 by regulating the optical bandgap, enhancing charge separation capability, and improving carrier mobility of COFs through structural design and functional group modification. These methods contribute to the design of efficient, stable, and sustainable COFs for photocatalytic production of H2O2.

Contents

1 Introduction

2 Hydrogen peroxide production by ORR pathway

2.1 Direct one-step two-electron oxygen reduction mechanism

2.2 Indirect two-step single-electron oxygen reduction mechanism

3 Hydrogen peroxide production by WOR pathway

4 Dual-channel path production of hydrogen peroxide

5 Conclusion and outlook

Key words

covalent organic framework / hydrogen peroxide / photocatalysis / oxygen reduction / water oxidation

Cite this article

Download Citations
Anqi Chen , Zhiwei Jiang , Juntao Tang , et al. Photocatalytic Production of Hydrogen Peroxide from Covalent Organic Framework Materials[J]. Progress in Chemistry. 2024, 36(3): 357-366 https://doi.org/10.7536/PC230724

References

[1]
Chen Z, Yao D C, Chu C C, Mao S. Chem. Eng. J., 2023, 451: 138489.
[2]
Fu Y J, Liu C A, Zhang M l, Zhu C, Li H, Wang H B, Song Y X, Huang H, Liu Y, Kang Z H. Adv. Energy Mater., 2018, 8: 1802525.
[3]
Liu Y, Zhao Y, Wang J L. J. Hazard. Mater., 2021, 404: 124191.
[4]
Sang Y J, Cao F F, Li W, Zhang L, You Y W, Deng Q Q, Dong K, Ren J S, Qu X G. J. Am. Chem. Soc., 2020, 142(11): 5177.
[5]
Zhao C, Shi C J, Li Q, Wang X Y, Zeng G, Ye S, Jiang B J, Liu J. Mater. Today Energy, 2022, 24: 100926.
[6]
Melchionna M, Fornasiero P, Prato M. Adv. Mater., 2019, 31(13): 1802920.
[7]
Song X. Master’s Dissertation of Yanshan University, 2020.
(宋鑫. 燕山大学硕士论文, 2020)
[8]
Wu M J. Master’s Dissertation of Beijing University of Chemical Technology, 2019.
(吴敏杰. 北京化工大学硕士论文, 2019)
[9]
Fukuzumi S, Lee Y M, Nam W. Chin. J. Catal., 2021, 42(8): 1241.
[10]
Li X L. Master's dissertation of Zhengzhou University, 2020.
(李新立. 郑州大学硕士论文, 2020 )
[11]
Yang X R, Deng M Y, Zhang X X, Applied Chemical Industry, 2023, 52 (5): 1508.
(杨晓茹, 邓明杨, 张晓昕. 应用化工, 2023, 52 (5): 1508.).
[12]
Zhang T, Zhang G, Chen L. Acc. Chem. Res., 2022, 55(6): 795.
[13]
Yu X H, Viengkeo B, He Q, Zhao X, Huang Q L, Li P P, Huang W, Li Y G. Adv. Sustain. Syst., 2021, 5(10): 2100184.
[14]
Li L J, Xu L P, Hu Z F, Yu J C. Adv. Funct. Mater., 2021, 31: 2106120.
[15]
Wang H, Almatrafi E, Wang Z W, Yang Y, Xiong T, Yu H B, Qin H, Yang H L, He Y Z, Zhou C Y, Zeng G M, Xu P. J. Colloid Interface Sci., 2022, 608: 1051.
[16]
Tan F L, Zheng Y Y, Zhou Z P, Wang H L, Dong X, Yang J, Ou Z W, Qi H Y, Liu W, Zheng Z K, Chen X D. CCS Chem., 2022, 4(12): 3751.
[17]
Han W K, Lu H S, Fu J X, Liu X, Zhu X M, Yan X D, Zhang J W, Jiang Y Q, Dong H L, Gu Z G. Chem. Eng. J., 2022, 449: 137802.
[18]
Zhai L P, Xie Z P, Cui C X, Yang X B, Xu Q, Ke X T, Liu M H, Qu L B, Chen X, Mi L W. Chem. Mater., 2022, 34(11): 5232.
[19]
Wu C B, Teng Z Y, Yang C, Chen F S, Yang H B, Wang L, Xu H X, Liu B, Zheng G F, Han Q. Adv. Mater., 2022, 34: 2110266.
[20]
Chai S M, Chen X W, Zhang X R, Fang Y X, Sprick R S, Chen X. Environ. Sci. Nano, 2022, 9(7): 2464.
[21]
Hu H, Tao Y L, Wang D, Li C L, Jiang Q C, Shi Y X, Wang J, Qin J P, Zhou S J, Kong Y. J. Colloid Interface Sci., 2023, 629: 750.
[22]
Liao Q, Sun Q, Xu H, Wang Y, Xu Y, Li Z, Hu J, Wang D, Li H, Xi K. Angew. Chem. Int. Ed., 2023, e202310556.
[23]
Das P, Chakraborty G, Roeser J, Vogl S, Rabeah J, Thomas A. J. Am. Chem. Soc., 2023, 145(5): 2975.
[24]
Sun J M, Sekhar Jena H, Krishnaraj C, Singh Rawat K, Abednatanzi S, Chakraborty J, Laemont A, Liu W L, Chen H, Liu Y Y, Leus K, Vrielinck H, Van Speybroeck V, Van Der Voort P. Angew. Chem. Int. Ed., 2023, 62(19): 2216719.
[25]
Deng M J, Sun J M, Laemont A, Liu C H, Wang L Y, Bourda L, Chakraborty J, Van Hecke K, Morent R, De Geyter N, Leus K, Chen H, Van Der Voort P. Green Chem., 2023, 25(8): 3069.
[26]
Das P, Roeser J, Thomas A. Angew. Chem. Int. Ed., 2023, 62(29): 2304349.
[27]
Yang S, Lu L L, Li J, Cheng Q Q, Mei B B, Li X W, Mao J N, Qiao P Z, Sun F F, Ma J Y, Xu Q, Jiang Z. SusMat, 2023, 3(3): 379.
[28]
Shao C C, He Q, Zhang M C, Jia L, Ji Y J, Hu Y P, Li Y Y, Huang W, Li Y G. Chin. J. Catal., 2023, 46: 28.
[29]
Zhang X C, Zhang J Z, Miao J, Wen X, Chen C, Zhou B X, Long M C. Chem. Eng. J., 2023, 466: 143085.
[30]
Trenker S, Grunenberg L, Banerjee T, Savasci G, Poller L M, Muggli K I M, Haase F, Ochsenfeld C, Lotsch B V. Chem. Sci., 2021, 12(45): 15143.
[31]
Krishnaraj C, Sekhar Jena H, Bourda L, Laemont A, Pachfule P, Roeser J, Chandran C V, Borgmans S, Rogge S M J, Leus K, Stevens C V, Martens J A, Van Speybroeck V, Breynaert E, Thomas A, Van Der Voort P. J. Am. Chem. Soc., 2020, 142(47): 20107.
[32]
Luo Y, Zhang B P, Liu C C, Xia D H, Ou X W, Cai Y P, Zhou Y, Jiang J, Han B. Angew. Chem. Int. Ed., 2023, 62(26): 2305355.
[33]
Zhi Q J, Liu W P, Jiang R, Zhan X N, Jin Y C, Chen X, Yang X Y, Wang K, Cao W, Qi D D, Jiang J Z. J. Am. Chem. Soc., 2022, 144(46): 21328.
[34]
Liu Y, Han W K, Chi W W, Mao Y Q, Jiang Y Q, Yan X D, Gu Z G. Appl. Catal. B Environ., 2023, 331: 122691.
[35]
Yang T, Chen Y, Wang Y C, Peng X Q, Kong A G. ACS Appl. Mater. Interfaces, 2023, 15(6): 8066.
[36]
Mou Y, Wu X D, Qin C C, Chen J Y, Zhao Y L, Jiang L B, Zhang C, Yuan X Z, Huixiang Ang E, Wang H, Angew. Chem. Int. Ed., 2023, e202309480.
[37]
Zhao W, Yan P Y, Li B Y, Bahri M, Liu L J, Zhou X, Clowes R, Browning N D, Wu Y, Ward J W, Cooper A I. J. Am. Chem. Soc., 2022, 144(22): 9902.
[38]
Wang H Z, Yang C, Chen F S, Zheng G F, Han Q. Angew. Chem. Int. Ed., 2022, 61: e202202328.
[39]
Di X, Lv X M, Wang H Z, Chen F S, Wang S Y, Zheng G F, Wang B, Han Q. Chem. Eng. J., 2023, 455: 140124.
[40]
Yang Y P, Kang J X, Li Y, Liang J J, Liang J X, Jiang L, Chen D M, He J, Chen Y J, Wang J Q. New J. Chem., 2022, 46(45): 21605.
[41]
Pan G D, Hou X S, Liu Z Y, Yang C K, Long J L, Huang G C, Bi J H, Yu Y, Li L Y. ACS Catal., 2022, 12(24): 14911.
[42].
Chen L, Wang L, Wan Y Y, Zhang Y, Qi Z M, Wu X J, Xu H X. Adv. Mater., 2020, 32: 1904433.
[43].
Cheng H, Lv H F, Cheng J, Wang L, Wu X J, Xu H X. Adv. Mater., 2022, 34: 2107480.
[44]
Wan Y Y, Wang L, Xu H X, Wu X J, Yang J L. J. Am. Chem. Soc., 2020, 142(9): 4508.
[45]
Chen D, Chen W B, Wu Y T, Wang L, Wu X J, Xu H X, Chen L. Angew. Chem. Int. Ed., 2023, 62(9): 2217479.
[46]
Kou M P, Wang Y Y, Xu Y X, Ye L Q, Huang Y P, Jia B H, Li H, Ren J Q, Deng Y, Chen J H, Zhou Y, Lei K, Wang L, Liu W, Huang H W, Ma T Y. Angew. Chem. Int. Ed., 2022, 61(19): 2200413.
[47]
Chang J N, Li Q, Shi J W, Zhang M, Zhang L, Li S, Chen Y F, Li S L, Lan Y Q. Angew. Chem. Int. Ed., 2023, 62(9): 2218868.
[48]
Yue J Y, Song L P, Fan Y F, Pan Z X, Yang P, Ma Y, Xu Q, Tang B. Angew. Chem. Int. Ed., 2023, 62(38): 2309624.
[49]
Wu M M, Shan Z, Wang J J, Liu T T, Zhang G. Chem. Eng. J., 2023, 454: 140121.
[50]
Zhou Z M, Sun M H, Zhu Y B, Li P Z, Zhang Y R, Wang M K, Shen Y. Appl. Catal. B Environ., 2023, 334: 122862.

Funding

Hunan province Funds for Distinguished Young Scientists(2022JJ10080)
Hunan Provincial Science and Technology Plan Project, China(2021GK2014)
National Natural Science Foundation of China(52173212)
National Natural Science Foundation of China(52103275)
Hunan Provincial Natural Science Foundation(2021JJ30795)
PDF(5797 KB)

Accesses

Citation

Detail

Sections
Recommended

/