Covalent Organic Frameworks in Photocatalytic Organic Reactions

Jingyi Wang, Xin Xu, Shijia Zheng, Pifeng Wei, Wankai An

Prog Chem ›› 2024, Vol. 36 ›› Issue (5) : 645-666.

PDF(300813 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(300813 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (5) : 645-666. DOI: 10.7536/PC230824
Review

Covalent Organic Frameworks in Photocatalytic Organic Reactions

Author information +
History +

Abstract

Covalent organic frameworks(COFs)have become one of the research focuses currently in porous materials due to their excellent photocatalytic activity.Compared with other heterogeneous photocatalysts,COFs possess regular and controllable structures,large specific surface areas,uniform pore channels and good chemical/thermal stability.Additionally,COFs have suitable band structures,adjustable absorption range,and are easy to be functionalized and recovered/reused after the reactions.the advantages above surely endow COFs with potential value in fundamental researches and industrial applications.in recent years,the application of COFs in photocatalysis has gained rapid progress,especially in the field of photocatalytic organic transformations.Theses significant works have greatly promoted the development of COFs.in this review,numerous synthesis strategies for photo-functionalized COFs are briefly introduced,e.g.,“bottom-up”strategy,post modification and combination method.Then,the photocatalytic reaction mechanisms mediated by COFs are condensed into two pathways,i.e.,energy transfer and electron transfer.the latest research progress of COFs as photocatalysts in photocatalytic selective oxidation reaction(oxidation of amines to imines,preparation of sulfoxides through selective oxidation of sulfides,oxidation hydroxylation of arylboronic acids to phenols,and oxidation of N-aryl tetrahydroisoquinoline),reduction reaction(reductive dehalogenation,hydrogenation of nitrobenzene,and hydrogenation of styrene),coupling reaction(C-C cross-dehydrogenative coupling reaction,C−N cross-coupling reaction,and C−S cross-coupling reaction),cyclization reaction,polymerization reaction and asymmetric organic synthesis,etc.,are succinctly outlined and discussed.Finally,the application of COFs in photocatalysis is summarized and prospected。

Contents

1 Introduction

2 Synthesis strategies for photo-functionalized COFs

2.1 Bottom-up strategy

2.2 Post modification

2.3 Combination method

3 Mechanism of COFs photocatalytic reaction

4 COFs for photocatalytic organic reaction

4.1 Oxidation reaction

4.2 Reduction reaction

4.3 Coupling reaction

4.4 Cyclization reaction

4.5 Polymerization reaction

4.6 Asymmetric organic synthesis

5 Conclusion and outlook

Key words

covalent organic frameworks / photocatalysis / oxidation reaction / reduction reaction / coupling reaction / cyclization reaction / asymmetric organic synthesis

Cite this article

Download Citations
Jingyi Wang , Xin Xu , Shijia Zheng , et al . Covalent Organic Frameworks in Photocatalytic Organic Reactions[J]. Progress in Chemistry. 2024, 36(5): 645-666 https://doi.org/10.7536/PC230824

References

[1]
Shindell D, Smith C J. Nature, 2019, 573(7774): 408.
[2]
《The Bulletin of the State Council of the People's Republic of China》, 2021, 31.
(《中华人民共和国国务院公报》 , 2021, 31.).
[3]
Wang M F, Liu S S, Qian T, Liu J, Zhou J Q, Ji H Q, Xiong J, Zhong J, Yan C L. Nat. Commun., 2019, 10: 341.
[4]
Wang H N, Zou Y H, Sun H X, Chen Y F, Li S L, Lan Y Q. Coord. Chem. Rev., 2021, 438: 213906.
[5]
Li Q, Ouyang Y, Li H, Wang L, Zeng J. Angew. Chem. Int. Ed. 2022, 61: e202108069.
[6]
Candish L, Collins K D, Cook G C, Douglas J J, Gómez-Suárez A, Jolit A, Keess S. Chem. Rev., 2022, 122(2): 2907.
[7]
Mai H X, Chen D H, Tachibana Y, Suzuki H, Abe R, Caruso R A. Chem. Soc. Rev., 2021, 50(24): 13692.
[8]
Lu F D, Chen J, Jiang X, Chen J R, Lu L Q, Xiao W J. Chem. Soc. Rev., 2021, 50(22): 12808.
[9]
Romero N A, Nicewicz D A. Chem. Rev., 2016, 116(17): 10075.
[10]
Lang X J, Chen X D, Zhao J C. Chem. Soc. Rev., 2014, 43(1): 473.
[11]
Fujishima A, Honda K. Nature, 1972, 238(5358): 37.
[12]
Schneider J, Matsuoka M, Takeuchi M, Zhang J L, Horiuchi Y, Anpo M, Bahnemann D W. Chem. Rev., 2014, 114(19): 9919.
[13]
Cheng L, Xiang Q J, Liao Y L, Zhang H W. Energy Environ. Sci., 2018, 11(6): 1362.
[14]
Xu Y H, Jin S B, Xu H, Nagai A, Jiang D L. Chem. Soc. Rev., 2013, 42(20): 8012.
[15]
Verma S K, Verma R, Girish Y R, Xue F, Yan L, Verma S, Singh M, Vaishnav Y, Shaik A B, Bhandare R R, Rakesh K P, Sharath Kumar K S, Rangappa K S. Green Chem., 2022, 24(2): 438.
[16]
Zhang T, Lin W B. Chem. Soc. Rev., 2014, 43(16): 5982.
[17]
Mo G L, Wang Q, Lu W Y, Wang C, Li P. Chin. J. Chem., 2023, 41(3): 335.
[18]
Côté A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.
[19]
Zhang Z Q, Kang C J, Peh S B, Shi D C, Yang F X, Liu Q X, Zhao D. J. Am. Chem. Soc., 2022, 144(33): 14992.
[20]
Luo X X, Li W H, Liang H J, Zhang H X, Du K D, Wang X T, Liu X F, Zhang J P, Wu X L. Angew. Chem. Int. Ed., 2022, 61: e202117661.
[21]
Cao L, Liu X, Shinde D B, Chen C, Chen I C, Li Z, Zhou Z, Yang Z, Han Y, Lai Z. Angew. Chem. Int. Ed. 2022, 61: e202113141.
[22]
Sun J L, Xu Y F, Lv Y Q, Zhang Q C, Zhou X S. CCS Chem., 2023, 5(6): 1259.
[23]
Ding S Y, Dong M, Wang Y W, Chen Y T, Wang H Z, Su C Y, Wang W. J. Am. Chem. Soc., 2016, 138(9): 3031.
[24]
Liu Y, Ren J, Wang Y, Zhu X, Guan X, Wang Z, Zhou Y, Zhu L, Qiu S, Xiao S, Fang Q. CCS Chem., 2022, doi: 10.31635/ccschem.022.202202352.
[25]
Dong M, Li W, Zhou J, You S Q, Sun C Y, Yao X H, Qin C, Wang X L, Su Z M. Chin. J. Chem., 2022, 40(22): 2678.
[26]
Ding J H, Guan X Y, Lv J, Chen X H, Zhang Y, Li H, Zhang D L, Qiu S L, Jiang H L, Fang Q R. J. Am. Chem. Soc., 2023, 145(5): 3248.
[27]
Yang L T, Wang J L, Zhao K, Fang Z, Qiao H J, Zhai L P, Mi L W. ChemPlusChem, 2022, 87(11): e202200281.
[28]
He T, Zhao Y. Angew. Chem. Int. Ed., 2023, 62(22): 2304348.
[29]
Sun C, Sheng D, Wang B, Feng X. Angew. Chem. Int. Ed. 2023, 62: e202303378.
[30]
Chen Y X, Chen Q, Zhang Z H. Chin. J. Org. Chem., 2021, 41: 3826.
(陈育萱, 陈奇, 张占辉. 有机化学, 2021, 41: 3826.).
[31]
Chen H, Jena H S, Feng X, Leus K, Van Der Voort P. Angew. Chem. Int. Ed., 2022, 61(47): 2204938.
[32]
Wang G B, Xie K H, Xu H P, Wang Y J, Zhao F, Geng Y, Dong Y B. Coord. Chem. Rev., 2022, 472: 214774.
[33]
Zhao S Y, Liu C, Xu H, Yang X B. Progress in Chemistry, 2020, 32: 274.
( 赵苏艳, 刘畅, 徐浩, 杨晓博. 化学进展, 2020, 32: 274.)
[34]
Liu S S, Wang M F, He Y Z, Cheng Q Y, Qian T, Yan C L. Coord. Chem. Rev., 2023, 475: 214882.
[35]
Gong Y N, Guan X Y, Jiang H L. Coord. Chem. Rev., 2023, 475: 214889.
[36]
He M H, Ye Z Q, Lin G Q, Yin S, Huang X Y, Zhou X, Yin Y, Gui B, Wang C. Acta Chim. Sinica, 2023, 81: 784.
( 何明慧, 叶子秋, 林桂庆, 尹晟, 黄心翊, 周旭, 尹颖, 桂波, 汪成. 化学学报, 2023, 81: 784.)
[37]
Wang Q K, Sun J, Wei D C. Chin. J. Chem., 2022, 40(11): 1359.
[38]
Chen J C, Zhang M X, Wang S. A Acta Chim. Sinica, 2023, 81: 146.
( 陈俊畅, 张明星, 王殳凹. 化学学报, 2023, 81: 146.)
[39]
Ding S Y, Wang W. Chem. Soc. Rev., 2013, 42(2): 548.
[40]
Haug W K, Moscarello E M, Wolfson E R, McGrier P L. Chem. Soc. Rev., 2020, 49(3): 839.
[41]
Li Z P, Han S J, Li C Z, Shao P P, Xia H, Li H, Chen X, Feng X, Liu X M. J. Mater. Chem. A, 2020, 8(17): 8706.
[42]
Shao M C, Liu Y Q, Guo Y L. Chin. J. Chem., 2023, 41(10): 1260.
[43]
Gu Z J, Wang J J, Shan Z, Wu M M, Liu T T, Song L, Wang G X, Ju X H, Su J, Zhang G. J. Mater. Chem. A, 2022, 10(34): 17624.
[44]
Liu R Y, Tan K T, Gong Y F, Chen Y Z, Li Z E, Xie S L, He T, Lu Z, Yang H, Jiang D L. Chem. Soc. Rev., 2021, 50(1): 120.
[45]
Huang W, Hu Y, Qin Z, Ji Y, Zhao X, Wu Y, He Q, Li Y, Zhang C, Lu J, Li Y. Natl Sci Rev 2023, 10: nwac171.
[46]
Jati A, Dey K, Nurhuda M, Addicoat M A, Banerjee R, Maji B. J. Am. Chem. Soc., 2022, 144(17): 7822.
[47]
Wang J, Feng Y Q, Zhang B. Prog. Chem., 2022, 34(6): 1308
( 王杰, 冯亚青, 张宝. 化学进展, 2022, 34(6): 1308.)
[48]
Wang J P, Yu Y, Cui J Y, Li X R, Zhang Y L, Wang C, Yu X L, Ye J H. Appl. Catal. B Environ., 2022, 301: 120814.
[49]
Zhang M, Lu M, Lang Z L, Liu J, Liu M, Chang J N, Li L Y, Shang L J, Wang M, Li S L, Lan Y Q. Angew. Chem. Int. Ed., 2020, 59(16): 6500.
[50]
Lu G L, Huang X B, Li Y, Zhao G X, Pang G S, Wang G. J. Energy Chem., 2020, 43: 8.
[51]
Kamat P V. J. Phys. Chem. C, 2007, 111(7): 2834.
[52]
Nagai A, Chen X, Feng X, Ding X S, Guo Z Q, Jiang D L. Angew. Chem. Int. Ed., 2013, 52(13): 3770.
[53]
Sun N N, Jin Y C, Wang H L, Yu B Q, Wang R M, Wu H, Zhou W, Jiang J Z. Chem. Mater., 2022, 34(4): 1956.
[54]
Wang G B, Li S, Yan C X, Zhu F C, Lin Q Q, Xie K H, Geng Y, Dong Y B. J. Mater. Chem. A, 2020, 8(15): 6957.
[55]
Li Z P, Zhi Y F, Shao P P, Xia H, Li G S, Feng X, Chen X, Shi Z, Liu X M. Appl. Catal. B Environ., 2019, 245: 334.
[56]
Wang Z J, Garth K, Ghasimi S, Landfester K, Zhang K A I. ChemSusChem, 2015, 8(20): 3459.
[57]
Murahashi S I. Angew. Chem. Int. Ed., 1995, 34(22): 2443.
[58]
Chen R, Shi J L, Ma Y, Lin G, Lang X J, Wang C. Angew. Chem. Int. Ed., 2019, 58: 6430.
[59]
Shi J L, Chen R, Hao H, Wang C, Lang X J. Angew. Chem. Int. Ed., 2020, 59: 9088.
[60]
Qiu W J, He Y J, Li L Y, Liu Z Y, Zhong S H, Yu Y. Langmuir, 2021, 37(39): 11535.
[61]
Li M H, Yang Z Q, Li Z, Wu J R, Yang B, Yang Y W. Chem. Mater., 2022, 34(12): 5726.
[62]
Zhang F L, Dong X Y, Wang Y X, Lang X J. Small, 2023, 19(38): e2302456.
[63]
Gao S, Zeng Q L, Tang H Y, Liu Y, Dong J Y, Zhang B B. Progress in Chemistry, 2010, 22: 1760.
( 高珊, 曾庆乐, 唐红艳, 刘洋, 董俊宇, 张斌彬. 化学进展, 2010, 22: 1760.)
[64]
Wang N Z, Saidhareddy P, Jiang X F. Nat. Prod. Rep., 2020, 37(2): 246.
[65]
Skolia E, Gkizis P L, Kokotos C G. ChemPlusChem, 2022, 87(4): e202200008.
[66]
Hao W J, Chen D, Li Y S, Yang Z F, Xing G L, Li J, Chen L. Chem. Mater., 2019, 31(19): 8100.
[67]
Wang X, Dong M J, Wu C D. Nanoscale, 2020, 12(30): 16136.
[68]
Jiménez-Almarza A, López-Magano A, Marzo L, Cabrera S, Mas-Ballesté R, Alemán J. ChemCatChem, 2019, 11(19): 4916.
[69]
Liu L F, Zhang B X, Tan X N, Tan D X, Cheng X Y, Han B X, Zhang J L. Chem. Commun., 2020, 56(33): 4567.
[70]
López-Magano A, Platero-Prats A E, Cabrera S, Mas-Ballesté R, Alemán J. Appl. Catal. B Environ., 2020, 272: 119027.
[71]
An J, Zou Y Q, Yang Q Q, Wang Q, Xiao W J. Adv. Synth. Catal., 2013, 355(8): 1483.
[72]
Liu Q, Wu L Z. Natl. Sci. Rev., 2017, 4: 359.
[73]
Wei P F, Qi M Z, Wang Z P, Ding S Y, Yu W, Liu Q, Wang L K, Wang H Z, An W K, Wang W. J. Am. Chem. Soc., 2018, 140(13): 4623.
[74]
Bi S, Thiruvengadam P, Wei S C, Zhang W B, Zhang F, Gao L S, Xu J S, Wu D Q, Chen J S, Zhang F. J. Am. Chem. Soc., 2020, 142(27): 11893.
[75]
Wang W J, Cai K R, Zhou W W, Tao F, Li Z Y, Lin Q Y, Wang L K, Yu Z P, Zhang J, Zhou H P. ACS Appl. Nano Mater., 2023, 6(10): 8396.
[76]
Wang G B, Wang Y J, Kan J L, Xie K H, Xu H P, Zhao F, Wang M C, Geng Y, Dong Y B. J. Am. Chem. Soc., 2023, 145(9): 4951.
[77]
Staveness D, Bosque I, Stephenson C R J. Acc. Chem. Res., 2016, 49(10): 2295.
[78]
Dou Y, Gu X, Jiang J, Zhu Q. Progress in Chemistry, 2018, 30: 1317.
(窦言东, 顾晓旭, 蒋建泽, 朱勍. 化学进展, 2018, 30:1317.).
[79]
Geng S S, Xiong B J, Zhang Y, Zhang J, He Y, Feng Z. Chem. Commun., 2019, 55(84): 12699.
[80]
Liu S Y, Tian M, Bu X B, Tian H, Yang X B. Chem., 2021, 27(28): 7738.
[81]
Liu M J, Liu J N, Li J, Zhao Z H, Zhou K, Li Y M, He P P, Wu J S, Bao Z B, Yang Q W, Yang Y W, Ren Q L, Zhang Z G. J. Am. Chem. Soc., 2023, 145(16): 9198.
[82]
Xue F L, Xiong J F, Mo G Z, Peng P, Chen R H, Wang Z Y. Chin. J. Org. Chem., 2013, 33: 2291.
( 薛福玲, 熊金锋, 莫广珍, 彭湃, 陈任宏, 汪朝阳. 有机化学, 2013, 33: 2291.)
[83]
Yadav D, Kumar A, Kim J Y, Park N J, Baeg J O. J. Mater. Chem. A, 2021, 9(15): 9573.
[84]
Blaser H U, Malan C, Pugin B, Spindler F, Steiner H, Studer M. Adv. Synth. Catal., 2003, 345: 103.
[85]
Corma A, Serna P. Science, 2006, 313(5785): 332.
[86]
Li C Z, Ren X M, Guo M, Li W J, Li H, Yang Q H. Catal. Sci. Technol., 2021, 11(11): 3873.
[87]
Zhang M Y, Li J K, Wang R, Zhao S N, Zang S Q, Mak T C W. Adv. Sci., 2021, 8: 2101884.
[88]
Sun D R, Kim D P. ACS Appl. Mater. Interfaces, 2020, 12(18): 20589.
[89]
Perry I B, Brewer T F, Sarver P J, Schultz D M, DiRocco D A, MacMillan D W C. Nature, 2018, 560(7716): 70.
[90]
Tian T, Li Z P, Li C J. Green Chem., 2021, 23(18): 6789.
[91]
Liu W T, Su Q, Ju P Y, Guo B X, Zhou H, Li G H, Wu Q L. ChemSusChem, 2017, 10(4): 664.
[92]
Zhi Y F, Li Z P, Feng X, Xia H, Zhang Y M, Shi Z, Mu Y, Liu X M. J. Mater. Chem. A, 2017, 5(44): 22933.
[93]
Yang F, Li C C, Xu C C, Kan J L, Tian B, Qu H Y, Guo Y, Geng Y, Dong Y B. Chem. Commun., 2022, 58(10): 1530.
[94]
Ruiz-Castillo P, Buchwald S L. Chem. Rev., 2016, 116(19): 12564.
[95]
Gisbertz S, Reischauer S, Pieber B. Nat. Catal., 2020, 3(8): 611.
[96]
López-Magano A, Ortín-Rubio B, Imaz I, Maspoch D, Alemán J, Mas-Ballesté R. ACS Catal., 2021, 11(19): 12344.
[97]
Traxler M, Gisbertz S, Pachfule P, Schmidt J, Roeser J, Reischauer S, Rabeah J, Pieber B, Thomas A. Angew. Chem. Int. Ed., 2022, 61(21): e202117738.
[98]
Yusran Y, Xing J B, Lin Q H, Wu G, Peng W C, Wu Y, Su T H, Yang L Y, Zhang L M, Li Q W, Wang H, Li Z T, Zhang D W. Small, 2023, 19(32): 2303069.
[99]
Beletskaya I P, Ananikov V P. Chem. Rev., 2011, 111(3): 1596.
[100]
Liu Y, Xing S Y, Zhang J, Liu W, Xu Y N, Zhang Y, Yang K F, Yang L, Jiang K Z, Shao X X. Org. Chem. Front., 2022, 9(5): 1375.
[101]
Chen H, Liu W L, Laemont A, Krishnaraj C, Feng X, Rohman F, Meledina M, Zhang Q Q, Van Deun R, Leus K, Van Der Voort P. Angew. Chem. Int. Ed., 2021, 60(19): 10820.
[102]
An W K, Zheng S J, Xu X, Liu L J, Ren J S, Fan L X, Yang Z K, Ren Y L, Xu C L. Appl. Catal. B Environ., 2022, 316: 121630.
[103]
An W K, Xu X, Zheng S J, Du Y N, Ouyang J X, Xie L X, Ren Y L, He M M, Fan C L, Pan Z L, Li Y H. ACS Catal., 2023, 13(14): 9845.
[104]
Iizawa Y, Okonogi K, Hayashi R, Iwahi T, Yamazaki T, Imada A. Antimicrob. Agents Chemother., 1993, 37(1): 100.
[105]
Yuan J P, Xia Q Q, Zhu W W, Wu C L, Wang B X, Liu D B, Yang P   X, Xu P Y, Xu P H. ChemPhotoChem, 2020, 4(6): 445.
[106]
Li S, Li L, Li Y J, Dai L, Liu C X, Liu Y Z, Li J N, Lv J N, Li P F, Wang B. ACS Catal., 2020, 10(15): 8717.
[107]
Luo B C, Chen Y, Zhang Y B, Huo J Q. J. Catal., 2021, 402: 52.
[108]
Wu C J, Li X Y, Shao M Z, Kan J L, Wang G B, Geng Y, Dong Y B. Chin. Chem. Lett., 2022, 33(10): 4559.
[109]
Wu C J, Shao M Z, Niu L J, Li T R, Liang W J, Kan J L, Geng Y, Dong Y B. Eur. J. Org. Chem., 2023, 26(27): e202300232.
[110]
Yu T Y, Niu Q, Chen Y F, Lu M, Zhang M, Shi J W, Liu J, Yan Y, Li S L, Lan Y Q. J. Am. Chem. Soc., 2023, 145(16): 8860.
[111]
Shanmugam S, Boyer C. Science, 2016, 352(6289): 1053.
[112]
Pachfule P, Acharjya A, Roeser J, Sivasankaran R P, Ye M Y, Brückner A, Schmidt J, Thomas A. Chem. Sci., 2019, 10(36): 8316.
[113]
Lu Z, Yang H J, Fu X L, Zhao R K, Zhao Y L, Cai J Y, Xiao L Q, Hou L X. Eur. Polym. J., 2021, 157: 110670.
[114]
Wang K X, Kang X, Yuan C, Han X, Liu Y, Cui Y. Angew. Chem. Int. Ed., 2021, 60(35): 19466.
[115]
Zhu Y F, Zhu D Y, Chen Y, Yan Q Q, Liu C Y, Ling K X, Liu Y F, Lee D, Wu X W, Senftle T P, Verduzco R. Chem. Sci., 2021, 12(48): 16092.
[116]
Zhao Z Q, Ren J Y, Yuan Y, Sun Z Y, Chen W B, Su X, Zhang G, Chen L. ACS Appl. Polym. Mater., 2023, 5(2): 1577.
[117]
Yao W, Bazan-Bergamino E A, Ngai M Y. ChemCatChem, 2022, 14(1): e202101292.
[118]
Kang X, Wu X W, Han X, Yuan C, Liu Y, Cui Y. Chem. Sci., 2020, 11(6): 1494.
[119]
Li C Z, Ma Y H, Liu H R, Tao L, Ren Y Q, Chen X L, Li H, Yang Q H. Chin. J. Catal., 2020, 41(8): 1288.
[120]
Ma H C, Chen G J, Huang F, Dong Y B. J. Am. Chem. Soc., 2020, 142: 12574.
[121]
Ma H C, Sun Y N, Chen G J, Dong Y B. Chem. Sci., 2022, 13(7): 1906.
[122]
Kan X, Wang J C, Chen Z, Du J Q, Kan J L, Li W Y, Dong Y B. J. Am. Chem. Soc., 2022, 144(15): 6681.

Funding

Natural Science Foundation of Shandong Province(ZR2020QB038)
National Natural Science Foundation of China(21702049)
Science and technology Innovation Foundation of Henan Agricultural University(2023CXZX006)
PDF(300813 KB)

Accesses

Citation

Detail

Sections
Recommended

/