Optimizing Metabolic Pathways by Using Bioretrosynthesis Tools

Liu Fufeng, Liu Xuzhi, Li Jinbi, Lu Fuping

Prog Chem ›› 2024, Vol. 36 ›› Issue (4) : 501-510.

PDF(420770 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(420770 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (4) : 501-510. DOI: 10.7536/PC230906
Review

Optimizing Metabolic Pathways by Using Bioretrosynthesis Tools

Author information +
History +

Abstract

Biocatalysis has become an important technology In the field of biosynthesis because of its mild reaction conditions,high efficiency,high specificity and low price.There are a series of highly integrated metabolic networks in the biosynthesis system,and the study of multi-enzyme catalytic system has become an inevitable trend in the field of biosynthesis,so it is of great significance to explore the unknown multi-enzyme synthesis path based on the known products.in this review,the concepts of multi-enzyme system and retrosynthesis process are introduced.and the design methods,advantages and disadvantages of retrosynthesis tools are summarized.Then the tools are divided into host-based and host-less tools.For each of these two types,some representative retrosynthesis tools are listed to analyze their respective design processes and differences.Finally,the possibility of artificial intelligence-assisted multi-enzyme system is discussed and the optimization and development of multi-enzyme pathway construction tools are forecasted。

Contents

1 Introduction

2 Multienzyme catalysis

3 Methods for building retrosynthesis tools

4 Introduction to the retrosynthesis tools

4.1 Host-based retrosynthetic tools

4.2 Host-free retrosynthetic tools

5 Artificial intelligence fuels the development of multi-enzyme systems

6 Conclusion and outlook

Key words

multi-enzyme catalysis / path design / retrosynthesis / biological retrosynthesis tool

Cite this article

Download Citations
Liu Fufeng , Liu Xuzhi , Li Jinbi , et al. Optimizing Metabolic Pathways by Using Bioretrosynthesis Tools[J]. Progress in Chemistry. 2024, 36(4): 501-510 https://doi.org/10.7536/PC230906

References

[1]
Choi J M, Han S S, Kim H S. Biotechnol. Adv., 2015, 33(7): 1443.
[2]
Wang H Y, Hu X, Hu Y J, Zhu N, Guo K. Progress in Chemistry, 2022, 34(8): 1796.
( 王慧悦, 胡欣, 胡玉静, 朱宁, 郭凯. 化学进展, 2022, 34(8): 1796.)
[3]
Li H, Shi X D, Li J L. Progress in Chemistry, 2022, 34(3): 568.
( 李红, 史晓丹, 李洁龄. 化学进展, 2022, 34(3): 568.)
[4]
Wu J J X, Wei H. Progress in Chemistry, 2021, 33(1): 42.
( 武江洁星, 魏辉. 化学进展, 2021, 33(1): 42.)
[5]
Du C C, Hu P C, Ren L J. Appl. Microbiol. Biotechnol., 2023, 107(1): 9.
[6]
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Chem. Rev., 2021, 121(17): 10367.
[7]
Nestl B M, Hammer S C, Nebel B A, Hauer B. Angew. Chem. Int. Ed., 2014, 53(12): 3070.
[8]
Zhao Z T, Zhang Z Z, Liang Z H. Progress in Chemistry, 2022, 34(11): 2386.
( 赵自通, 张真真, 梁志宏. 化学进展, 2022, 34(11): 2386.)
[9]
Huang W Q, Wang Y X, Tian W S, Wang J, Tu P F, Wang X H, Shi S B, Liu X. China Journal of Chinese Materia Medica, 2023, 48(2): 336.
( 黄文倩, 王迎夏, 田维圣, 王娟, 屠鹏飞, 王晓晖, 史社坡, 刘晓. 中国中药杂志, 2023, 48(2): 336.)
[10]
Simić S, Zukić E, Schmermund L, Faber K, Winkler C K, Kroutil W. Chem. Rev., 2022, 122(1): 1052.
[11]
Yi D, Bayer T, Badenhorst C P S, Wu S K, Doerr M, Höhne M, Bornscheuer U T. Chem. Soc. Rev., 2021, 50(14): 8003.
[12]
Benítez-Mateos A I, Roura Padrosa D, Paradisi F. Nat. Chem., 2022, 14(5): 489.
[13]
Sharma A, Gupta G, Ahmad T, Mansoor S, Kaur B. Food Rev. Int., 2021, 37(2): 121.
[14]
Zeng T, Wu R B. Synthetic Biology, 2023, 4(3): 535.
( 曾涛, 巫瑞波. 合成生物学, 2023, 4(3): 535.)
[15]
Hossain G S, Nadarajan S P, Zhang L, Ng T K, Foo J L, Ling H, Choi W J, Chang M W. Front. Microbiol., 2018, 9: 155.
[16]
Sperl J M, Sieber V. ACS Catal., 2018, 8(3): 2385.
[17]
Shi J F, Wu Y Z, Zhang S H, Tian Y, Yang D, Jiang Z Y. Chem. Soc. Rev., 2018, 47(12): 4295.
[18]
Bell E L, Finnigan W, France S P, Green A P, Hayes M A, Hepworth L J, Lovelock S L, Niikura H, Osuna S, Romero E, Ryan K S, Turner N J, Flitsch S L. Nat. Rev. Meth. Primers, 2021, 1: 46.
[19]
Ren S Z, Li C H, Jiao X B, Jia S R, Jiang Y J, Bilal M, Cui J D. Chem. Eng. J., 2019, 373: 1254.
[20]
Hwang E T, Lee S. ACS Catal., 2019, 9(5): 4402.
[21]
Hold C, Billerbeck S, Panke S. Nat. Commun., 2016, 7: 12971.
[22]
Chi C B, Zhang W C, Luo M X, Zhang M, Chen G. Chem. Eng. J., 2023, 458: 141321.
[23]
Siedentop R, Claaßen C, Rother D, Lütz S, Rosenthal K. Catalysts, 2021, 11(10): 1183.
[24]
Lopez-Gallego F, Schmidt-Dannert C. Curr. Opin. Chem. Biol., 2010, 14(2): 174.
[25]
López-Gallego F. Methods in Enzymology, 2019, 617: 385.
[26]
Zhang Y C, Nie N, Zhang Y F. Chin. J. Catal., 2022, 43(7): 1749.
[27]
Wei Y X, Han Y L, Lu D N, Qiu T. Journal of Tsinghua University Science and Technology, 2023, 63(5): 697.
( 魏奕新, 韩一蕾, 卢滇楠, 邱彤. 清华大学学报(自然科学版), 2023, 63(5): 697.)
[28]
Law J, Zsoldos Z, Simon A, Reid D, Liu Y, Khew S Y, Johnson A P, Major S, Wade R A, Ando H Y. J. Chem. Inf. Model., 2009, 49(3): 593.
[29]
Yu T H, Boob A G, Volk M J, Liu X, Cui H Y, Zhao H M. Nat. Catal., 2023, 6(2): 137.
[30]
Caspi R, Billington R, Keseler I M, Kothari A, Krummenacker M, Midford P E, Ong W K, Paley S, Subhraveti P, Karp P D. Nucleic Acids Res., 2020, 48(D1): D445.
[31]
Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Nucl. Acids Res., 2014, 42(D1): D199.
[32]
Li S W. Masteral Dissertation of Lanzhou University, 2023.
( 李思徵. 兰州大学硕士论文, 2023.)
[33]
Chen Y Y, Song D Q, Li Y J, Zhao H P. Chemistry, 2022, 85(08): 951.
( 陈颖莹, 荣丹琪, 李元晶, 赵鸿萍. 化学通报, 2022, 85(08): 951.)
[34]
Wang L, Ng C Y, Dash S, Maranas C D. Biochem. Soc. Trans., 2018, 46(3): 513.
[35]
Koch M, Duigou T, Faulon J L. ACS Synth Biol, 2019:
[36]
Hafner J, Payne J, MohammadiPeyhani H, Hatzimanikatis V, Smolke C. Nat. Commun., 2021, 12: 1760.
[37]
Hatzimanikatis V, Li C H, Ionita J A, Henry C S, Jankowski M D, Broadbelt L J. Bioinformatics, 2005, 21(8): 1603.
[38]
Coley C W, Green W H, Jensen K F. Acc. Chem. Res., 2018, 51(5): 1281.
[39]
Segler M H S, Waller M P. Chemistry(Weinheim an der Bergstrasse, Germany), 2017, 23(25): 6118.
[40]
Zheng S J, Zeng T, Li C T, Chen B H, Coley C W, Yang Y D, Wu R B. Nat. Commun., 2022, 13: 3342.
[41]
Hadadi N, Hatzimanikatis V. Curr. Opin. Chem. Biol., 2015, 28: 99.
[42]
Morgat A, Lombardot T, Axelsen K B, Aimo L, Niknejad A, Hyka-Nouspikel N, Coudert E, Pozzato M, Pagni M, Moretti S, Rosanoff S, Onwubiko J, Bougueleret L, Xenarios I, Redaschi N, Bridge A. Nucleic Acids Res., 2017, 45(7): 4279.
[43]
Orth J D, Thiele I,Palsson B Ø. Nat. Biotechnol., 2010, 28(3): 245.
[44]
Ding S Z, Liao X P, Tu W Z, Wu L, Tian Y, Sun Q P, Chen J N, Hu Q N. ACS Chem. Biol., 2017, 12(11): 2823.
[45]
Steinbeck C, Han Y Q, Kuhn S, Horlacher O, Luttmann E, Willighagen E. J. Chem. Inf. Comput. Sci., 2003, 43(2): 493.
[46]
Xue L, Godden J W, Stahura F L, Bajorath J. J. Chem. Inf. Comput. Sci., 2003, 43(4): 1151.
[47]
Tzanov A. Computing reviews, 2013, 54(12): 725.
[48]
Nadathur G, Miller D. J. ACM, 1990, 37(4): 777.
[49]
Ding D W, Ding Y R, Cai Y J, Chen S W, Xu W B. Computers and Applied Chemistry, 2008, 25(1): 4.
( 丁德武, 丁彦蕊, 蔡宇杰, 陈守文, 须文波. 计算机与应用化学, 2008, 25(1): 4.)
[50]
Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D. Nucleic Acids Res, 2004, 32: D431.
[51]
Sigrist C J A, de Castro E, Cerutti L, Cuche B A, Hulo N, Bridge A, Bougueleret L, Xenarios I. Nucleic Acids Res., 2013, 41(D1): D344.
[52]
Oh M, Yamada T, Hattori M, Goto S, Kanehisa M. J. Chem. Inf. Model., 2007, 47(4): 1702.
[53]
Hattori M, Tanaka N, Kanehisa M, Goto S. Nucleic Acids Res., 2010, 38: W652.
[54]
Moriya Y, Shigemizu D, Hattori M, Tokimatsu T, Kotera M, Goto S, Kanehisa M. Nucleic Acids Res., 2010, 38(suppl_2): W138.
[55]
Faust K, Croes D, van Helden J. Biosystems, 2011, 105(2): 109.
[56]
Topkis D M. IEEE Trans. Commun., 1988, 36(7): 855.
[57]
Motwalli O, Uludag M, Mijakovic I, Alazmi M, Bajic V B, Gojobori T, Gao X, Essack M. ACS Synth. Biol., 2020, 9(12): 3217.
[58]
Li Y L, de Ridder D, de Groot M J, Reinders M J. BMC Syst. Biol., 2008, 2(1): 111.
[59]
Chou C H, Chang W C, Chiu C M, Huang C C, Huang H D. Nucleic Acids Res., 2009, 37(suppl_2): W129.
[60]
Solomon K V, Moon T S, Ma B, Sanders T M, Prather K L J. ACS Synth. Biol., 2013, 2(3): 126.
[61]
Kuwahara H, Alazmi M, Cui X F, Gao X. Nucleic Acids Res., 2016, 44(W1): W217.
[62]
Moretti S, Tran V, Mehl F, Ibberson M, Pagni M. Nucleic Acids Res., 2021, 49(D1): D570.
[63]
Ni Z F, Stine A E, Tyo K E J, Broadbelt L J. Metab. Eng., 2021, 65: 79.
[64]
Delépine B, Duigou T, Carbonell P, Faulon J L. Metab. Eng., 2018, 45: 158.
[65]
Segler M H S, Preuss M, Waller M P. Nature, 2018, 555(7698): 604.
[66]
Han S J, Kwon S, Kim K S. Cancer Cell Int., 2021, 21(1): 152.
[67]
Grzybowski B A, Szymkuć S, Gajewska E P, Molga K, Dittwald P, Wołos A, Klucznik T. Chem, 2018, 4(3): 390.
[68]
Struble T J, Alvarez J C, Brown S P, Chytil M, Cisar J, DesJarlais R L, Engkvist O, Frank S A, Greve D R, Griffin D J, Hou X J, Johannes J W, Kreatsoulas C, Lahue B, Mathea M, Mogk G, Nicolaou C A, Palmer A D, Price D J, Robinson R I, Salentin S, Xing L, Jaakkola T, Green W H, Barzilay R, Coley C W, Jensen K F. J. Med. Chem., 2020, 63(16): 8667.
[69]
Duigou T, Du Lac M, Carbonell P, Faulon J L. Nucleic Acids Res., 2019, 47(D1): D1229.
[70]
Finnigan W, Hepworth L J, Flitsch S L, Turner N J. Nat. Catal., 2021, 4(2): 98.
[71]
Gao D K, Song W, Wu J, Guo L, Gao C, Liu J, Chen X L, Liu L M. Angew. Chem. Int. Ed., 2022, 61(36): e202207077.
[72]
Nadkarni P M, Ohno-Machado L, Chapman W W. J. Am. Med. Inform. Assoc., 2011, 18(5): 544.
[73]
Zhang Y, Li D, Wang Y H, Fang Y, Xiao W D. Appl Sci-Basel, 2019, 9(8): 13.
[74]
Han K, Wang Y H, Chen H T, Chen X H, Guo J Y, Liu Z H, Tang Y H, Xiao A, Xu C J, Xu Y X, Yang Z H, Zhang Y M, Tao D C. IEEE Trans. Pattern Anal. Mach. Intell., 2023, 45(1): 87.
[75]
Li Q B, Wen Z Y, Wu Z M, Hu S X, Wang N B, Li Y, Liu X, He B S. IEEE Trans. Knowl. Data Eng., 2023, 35(4): 3347.
[76]
Tan Z X, Wang S, Yang Z H, Chen G, Huang X C, Sun M S, Liu Y. AI Open, 2020, 1: 5.
[77]
Li Y, Huang C, Ding L Z, Li Z X, Pan Y J, Gao X. Methods, 2019, 166: 4.
[78]
Ching T, Himmelstein D S, Beaulieu-Jones B K, Kalinin A A, Do B T, Way G P, Ferrero E, Agapow P M, Zietz M, Hoffman M M, Xie W, Rosen G L, Lengerich B J, Israeli J, Lanchantin J, Woloszynek S, Carpenter A E, Shrikumar A, Xu J B, Cofer E M, Lavender C A, Turaga S C, Alexandari A M, Lu Z Y, Harris D J, DeCaprio D, Qi Y J, Kundaje A, Peng Y F, Wiley L K, Segler M H S, Boca S M, Swamidass S J, Huang A, Gitter A, Greene C S. J. R. Soc. Interface., 2018, 15(141): 47.
[79]
Ding S Z, Jiang X Q, Meng C, Sun L X, Wang Z Q, Yang H B, Shen G W, Xia N. Science China Chemistry, 2023, 53(01): 66.
( 丁邵珍, 江小琴, 孟超, 孙丽霞, 王正权, 杨弘宾, 沈国文, 夏宁. 中国科学: 化学, 2023, 53(01): 66.)
[80]
Capecchi A, Probst D, Reymond J L. J. Cheminf., 2020, 12: 43.
[81]
Li C Y, Feng J H, Liu S H, Yao J F. Comput. Intell. Neurosci., 2022, 2022: 8464452.
[82]
Handsel J, Matthews B, Knight N J, Coles S J. J. Cheminf., 2021, 13(1): 79.
[83]
Cui W X, Liu S H, Jiang F, Zhao D B. IEEE Trans. Multimedia, 2023, 25: 816.
[84]
Zhang Z Q, Xie A L, Guan J H, Zhou S G. Bioinformatics, 2023, 39(8): btad462.
[85]
Zhou Y, Wu S K, Bornscheuer U T. Chem. Commun., 2021, 57(82): 10661.
[86]
Li J X, Peng H, Cao Y W, Dou Y T, Zhang H K, Yu P, He L F. IEEE Trans. Knowl. Data Eng., 2023, 35(1): 560.
[87]
Wang W, Suo X Y, Wei X Y, Wang B, Wang H, Dai H N, Zhang X L. IEEE Trans. Knowl. Data Eng., 2023, 35(4): 3938.
[88]
Moon K, Im H J, Kwon S. Bioinformatics, 2023, 39(6): btad371.

Funding

National Key R&D Program of China(2021YFC2102701)
PDF(420770 KB)

Accesses

Citation

Detail

Sections
Recommended

/