MOFs-Based Photoelectrochemical Sensing Interface and Its Applications

Cunyin Zhou, Juan Huang, Qiong Wang, Hao Tang, Yunchu Hu, Wenlei Wang

Prog Chem ›› 2024, Vol. 36 ›› Issue (6) : 893-903.

PDF(4360 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4360 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (6) : 893-903. DOI: 10.7536/PC230913
Review

MOFs-Based Photoelectrochemical Sensing Interface and Its Applications

Author information +
History +

Abstract

photoelectrochemical sensing analysis is a rapidly developing new analytical technology in recent years,and photoelectric active materials are The key to photoelectrochemical sensing detection.metal-organic frameworks(MOFs)and their derivatives may be ideal carriers for the construction of photoelectrochemical sensing interfaces by dispersing photoelectrically active substances.Due to the"antenna effect"of organic ligands in MOFs,the metal clusters can be regarded as activated discrete semiconductor quantum dots,giving them photoelectric properties similar to those of semiconductors.the modification of MOFs materials with carbon-based compounds,organic polymers,noble metal nanoparticles,inorganic oxides,and quantum dots,and the construction of MOFs-based photoelectrochemical sensing interfaces,can improve the electrical conductivity of MOFs,promote the separation of photogenerated electrons-holes,and thus improve the photoelectric conversion efficiency.the MOFs-based photoelectrochemical sensing interfaces amplify the signal generated by photoelectrochemical sensing,enabling ultra-sensitive detection of the target object.based on these,this study provides a detailed introduction to the photoelectric activity mechanism,synthesis methods,and strategies for constructing photoelectric activity interfaces of MOFs-based materials.the applications of MOFs-based materials in photoelectrochemical sensing detection of small molecule compounds,immunoassay,enzyme activity and environmental analysis in recent years have been comprehensively reviewed.Finally,current challenges and future perspectives in this field are also proposed.

Contents

1 Introduction

2 MOFs-based photoelectric active materials

2.1 Photoelectric activity mechanism

2.2 Synthesis of MOFs-based photoelectric active materials

3 Strategies for the construction of MOFs-based photoelectrochemical sensing interfaces

3.1 MOFs-based photoelectrochemical sensing interfaces constructed by carbon-based compound modification

3.2 MOFs-based photoelectrochemical sensing interfaces constructed by organic polymer modification

3.3 MOFs-based photoelectrochemical sensing interfaces constructed by noble metal nanoparticle modification

3.4 MOFs-based photoelectrochemical sensing interfaces constructed by inorganic oxide modification

3.5 MOFs-based photoelectrochemical sensing interfaces constructed by quantum dots modification

4 MOFs-based photoelectrochemical sensing interfaces for analytical testing applications

4.1 Application of MOFs-based photoelectrochemical sensing interfaces for small molecule detection

4.2 Application of MOFs-based photoelectrochemical sensing interfaces for immunoassay detection

4.3 Application of MOFs-based photoelectrochemical sensing interfaces for enzyme analysis detection

4.4 Application of MOFs-based photoelectrochemical sensing interfaces for protein analysis detection

4.5 Application of MOFs-based photoelectrochemical sensing interfaces for environmental analysis detection

5 Conclusion and outlook

Key words

MOFs-based materials / photoelectrochemical sensing interface / photoelectrochemical sensing analysis

Cite this article

Download Citations
Cunyin Zhou , Juan Huang , Qiong Wang , et al . MOFs-Based Photoelectrochemical Sensing Interface and Its Applications[J]. Progress in Chemistry. 2024, 36(6): 893-903 https://doi.org/10.7536/PC230913

References

[1]
Gong Y T, Wu X M, Dong Y M, Liu Q Y, Li Z J, Wang G L. Sens. Actuat. B Chem., 2018, 266: 408.
[2]
Chen J G, Zhao J X, Feng R, Ma H M, Wang H, Ren X, Wei Q, Ju H X. J. Hazard. Mater., 2023, 459: 132122.
[3]
Cai J, Sheng P T, Zhou L P, Shi L, Wang N Y, Cai Q Y. Biosens. Bioelectron., 2013, 50: 66.
[4]
Sun J, Ma Z C, Cai H, Di J W. Colloids Surf. A Physicochem. Eng. Aspects, 2023, 666: 131291.
[5]
Zang Y, Zhang Y, Wei R H, Xue H G, Jiang J J. J. Electroanal. Chem., 2023, 944: 117631.
[6]
Liu G P, Chernikova V, Liu Y, Zhang K, Belmabkhout Y, Shekhah O, Zhang C, Yi S L, Eddaoudi M, Koros W J. Nat. Mater., 2018, 17(3): 283.
[7]
Xue D X, Cadiau A, Weseliński Ł J, Jiang H, Bhatt P M, Shkurenko A, Wojtas L, Chen Z J, Belmabkhout Y, Adil K, Eddaoudi M. Chem. Commun., 2018, 54(49): 6404.
[8]
Zhang Z K, Bai L C, Hu X L. Chem. Sci., 2019, 10(13): 3791.
[9]
He R, Xue K H, Wang J, Yang T L, Sun R R, Wang L, Yu X L, Omeoga U, Wang W L, Yang T, Hu Y C, Pi S F. J. Mater. Sci., 2019, 54(24): 14690.
[10]
Varsha M V, Nageswaran G. Microchem. J., 2023, 188: 108481.
[11]
Wang S, Xue Y, Yu Z, Huang F, Jin Y. Mater. Today Chem., 2023, 30: 101490.
[12]
Saeb M R, Rabiee N, Mozafari M, Mostafavi E. Materials (Basel), 2021, 14(13): 3652.
[13]
Abedi M, Abolmaali S S, Heidari R, Mohammadi Samani S, Tamaddon A M. Int. J. Pharm., 2021, 602: 120685.
[14]
Xiao W, Huang W J, Zhou Y, Jin Z H, Wei X P, Li J P. Anal. Chim. Acta, 2024: 342210.
[15]
Peng M, Guan G J, Deng H, Han B, Tian C, Zhuang J Y, Xu Y Y, Liu W Z, Lin Z. Environ. Sci.: Nano, 2019, 6(1): 207.
[16]
Gong C J. Masteral Dissertation of Shandong Normal University, 2022.
(巩成菊. 山东师范大学硕士论文, 2022.)
[17]
Wei Q X, Wang C, Li P, Wu SSE, Yang N J, Wang X, Wang Y Y, Li C Y. ASN, 2019, 1902086: 1.
[18]
Zhang G Y, Shan D, Dong H F, Cosnier S, Al-Ghanim K A, Ahmad Z, Mahboob S, Zhang X J. Anal. Chem., 2018, 90(20): 12284.
[19]
Zhang X, Peng J J, Song Y B, Chen Y W, Lu F S, Gao W H. Biosens. Bioelectron., 2019, 133: 125.
[20]
Gao J, Chen Y X, Ji W H, Gao Z H, Zhang J D. Anal., 2019, 144(22): 6617.
[21]
Dong W X, Li Z P, Wen W, Feng S S, Zhang Y J, Wen G M. RSC Adv., 2021, 11(45): 28320.
[22]
Zhang X, Yan T, Wu T, Feng Y, Sun M, Yan L, Du B, Wei Q. Biosens Bioelectron, 2019, 135: 88.
[23]
Liu H, Xu C Y, Li D D, Jiang H L. Angew. Chem. Int. Ed., 2018, 57(19): 5379.
[24]
Li M J, Wang H J, Yuan R, Chai Y Q. Chem.Comm., 2019, 55(72):10772.
[25]
Yan T, Wu T T, Wei S Y, Wang H Q, Sun M, Yan L G, Wei Q, Ju H X. Biosens. Bioelectron., 2020, 148: 111739.
[26]
Wu T T, Yan T, Zhang X, Feng Y X, Wei D, Sun M, Du B, Wei Q. Biosens. Bioelectron., 2018, 117: 575.
[27]
Zhang L X, Feng L P, Li P, Chen X, Jiang J T, Zhang S, Zhang C X, Zhang A C, Chen G F, Wang H. Chem Eng J., 2020, 395.
[28]
Qin X M, Pan Y, Zhang J C, Shen J R, Li C Y. Talanta., 2023, 253: 123684.
[29]
Zhang G Y, Zhuang Y H, Shan D, Su G F, Cosnier S, Zhang X J. Anal. Chem., 2016, 88(22): 11207.
[30]
Kong W S, Xiang M H, Xia L, Zhang M Y, Kong R M, Qu F L. Biosens. Bioelectron., 2020, 167: 112481.
[31]
Yang R Y, Yan X X, Li Y M, Zhang X H, Chen J H. ACS Appl. Mater. Interfaces, 2017, 9(49): 42482.
[32]
Tu W W, Wang Z Y, Dai Z H. Trac Trends Anal. Chem., 2018, 105: 470.
[33]
Grau-Crespo R, Aziz A, Collins A W, Crespo-Otero R, Hernández N C, Rodriguez-Albelo L M, Ruiz-Salvador A R, Calero S, Hamad S. Angew. Chem. Int. Ed., 2016, 128(52): 16246.
[34]
Usman M, Mendiratta S, Lu K L. Adv. Mater., 2017, 29(6): 1605071
[35]
Choi Y M, Lee B W, Jung M S, Han H S, Kim S H, Chen K F, Kim D H, Heinz T F, Fan S H, Lee J, Yi G R, Kim J K, Park J H. Adv. Energy Mater., 2020, 10(22): 2000570.
[36]
Maria A S, Nikolay F S, Olga A S. The J Phys Chem Lett., 2019, 10: 5041.
[37]
Qian Y T, Zhang F F, Pang H. Adv Funct Mater., 2021, 31(37): 2104231.
[38]
Zou D, Liu D. Mater. Today Chem., 2019, 12: 139.
[39]
Du S J, Liu X W, Lu S, Nie M, Li Q. Sci. Sin.-Chim, 2016, 46(4): 357.
[40]
Liao C M, He Y T, Zhao J C, Tang B H J, Tang A M, Sun Y H, Xu J L. Journal of Shanghai University of Engineering Science, 2012, 26(01): 32.
(廖晨敏, 何雨婷, 赵家昌, 唐博合金, 唐敖民, 孙艳红, 许菁利. 上海工程技术大学学报, 2012, 26(01): 32.)
[41]
Yang Y K, Yan W Y, Wang X M, Yu L G, Zhang J H, Bai B Q, Guo C X, Fan S H. Biosens. Bioelectron., 2021, 177: 113000.
[42]
Wang Z H, Yan Z Y, Wang F, Cai J B, Guo L, Su J K, Liu Y. Biosens. Bioelectron., 2017, 97: 107.
[43]
Van Assche T R C, Desmet G, Ameloot R, De Vos D E, Terryn H, Denayer J F M. Microporous Mesoporous Mater., 2012, 158: 209.
[44]
Zhao G Y, Sun X, Zhang L, Chen X, Mao Y C, Sun K N. J. Power Sources., 2018, 389: 8.
[45]
Yang Z Y. Masteral Dissertation of Yancheng Institute of Technology, 2023.
(杨正莹. 盐城工学院硕士论文, 2023.)
[46]
Asghar A, Iqbal N, Noor T, Kariuki B M, Kidwell L, Easun T L. Green Chem., 2021, 23(3): 1220.
[47]
James S L, Adams C J, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris K D M, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen A G, Parkin I P, Shearouse W C, Steed J W, Waddell D C. Chem. Soc. Rev., 2012, 41(1): 413.
[48]
Masoomi M Y, Morsali A, Junk P C. CrystEngComm., 2015, 17(3): 686.
[49]
Li Y J, Miao J P, Sun X J, Xiao J, Xia Q B, Xi H X, Li Z. Ciesc Journal, 2015, 66(02): 793.
(李玉洁, 苗晋朋, 孙雪娇, 肖静, 夏启斌, 奚红霞, 李忠. 化工学报, 2015, 66(02): 793.)
[50]
Zhao X, Qiao Z H, Sun Y X, Guo X Y, Zhong C L. Membrane Science and Technology, 2021, 41(05): 11.
(赵新, 乔志华, 孙玉绣, 郭翔宇, 仲崇立. 膜科学与技术, 2021, 41(05): 11.)
[51]
Zhang R, Tao C A, Chen R, Wu L, Zou X, Wang J. Nanomaterials (Basel)., 2018, 8(12):1067.
[52]
Zhou Y L, Wang Y, Li S R, Fang X, Yin H S, Wang P, Ai S Y. Sens. Actuat. B Chem., 2020, 318: 128310.
[53]
Wei Q X, Wang C, Zhou X, Wu T, Wang Y Y, Li C Y, Yang N J. Biosens. Bioelectron., 2019, 142: 111540.
[54]
Jung D W, Yang D A, Kim J, Kim J, Ahn W S. Dalton Trans., 2010, 39(11): 2883.
[55]
Son W J, Kim J, Kim J, Ahn W S. Chem. Commun., 2008(47): 6336.
[56]
You J Y, Zhang T Y, Liu Y F, Li B, Zhao Z D, Huang J H. J. Chem. Eng. Chin. Univ., 2015, 29(5): 1126.
(游佳勇, 张天永, 刘艳凤, 李彬, 赵振东, 黄俊浩. 高校化学工程学报, 2015, 29(5): 1126.)
[57]
Abdelhameed R M, Simões M M Q, Silva A M S, Rocha J. Chem., 2015, 21(31): 11072.
[58]
Shen L J, Liang S J, Wu W M, Liang R W, Wu L. Dalton Trans., 2013, 42(37): 13649.
[59]
Yang C, You X, Cheng J H, Zheng H D, Chen Y C. Appl. Catal. B Environ., 2017, 200: 673.
[60]
Hu L X, Deng G H, Lu W C, Pang S W, Hu X. Appl. Surf. Sci., 2017, 410: 401.
[61]
Zhang X. Masteral Dissertation of University of Jinan, 2020.
(张雪. 济南大学硕士论文, 2020.)
[62]
Travlou N A, Singh K, Rodríguez-Castellón E, Bandosz T J. J. Mater. Chem. A, 2015, 3(21): 11417.
[63]
Yin Y, Zhang H T, Huang P R, Xiang C L, Zou Y J, Xu F, Sun L X. Mater. Res. Bull., 2018, 99: 152.
[64]
Bhardwaj S K, Mohanta G C, Sharma A L, Kim K H, Deep A. Anal. Chim. Acta, 2018, 1043: 89.
[65]
Shang H Y, Xu H, Jin L J, Chen C Y, Song T X, Wang C, Du Y K. Sens. Actuat. B Chem., 2019, 301.
[66]
Zhang X B, Li Z R, Yang L L, Hu B, Zheng Q Y, Man J, Cao J J. J. Agric. Food Chem., 2024, 72(1): 874.
[67]
Zhan W W, Kuang Q, Zhou J Z, Kong X J, Xie Z X, Zheng L S. J. Am. Chem. Soc., 2013, 135(5): 1926.
[68]
Wang Y, Yin H S, Li X H, Waterhouse G I N, Ai S Y. Biosens. Bioelectron., 2019, 131: 163.
[69]
Chen K Y, Xue J Y, Zhou Q, Zhang Y, Zhang M M, Zhang Y J, Zhang H, Shen Y F. Anal. Chim. Acta, 2020, 1107: 145.
[70]
Zhou Y H, Wu W Y, Deng W F, Tan Y M. J. Electroanal. Chem., 2024, 957: 118128.
[71]
Jin D Q, Xu Q, Yu L Y, Hu X Y. Microchim. Acta., 2015, 182(11/12): 1885.
[72]
Cao Y, Wang L N, Wang C Y, Hu X Y, Liu Y L, Wang G X. Electrochim. Acta., 2019, 317: 341.

Funding

National Natural Science Foundation of China(41977129)
Hunan Provincial Natural Science Foundation of China(2022JJ90020)
Excellent Youth Funding of Hunan Provincial Education Department of China(22B0246)
PDF(4360 KB)

Accesses

Citation

Detail

Sections
Recommended

/